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Introduction

• In this teaching notes we are going to examine a few recent
models that try to address the various empirical “puzzles” by
modifying the preferences of agents.

• The topics we shall cover are the following

1. External Habit Formation as in Abel (1990) (applied to
current set up, and consistent with learning

2. External Habit Formation as in Campbell and Cochrane
(1999) (use the setting of Santos and Veronesi (2005))

3. Internal Habit Formation as in Detemple and Zapatero
(1991)

4. Stochastic Differential Utility (Recursive Utility) as in
Duffie and Epstein (1992).

• Notice that we leave out many, many important papers. The
reason is to keep the set up as close as possible to the one
introduced in previous teaching notes. See the syllabus for
other very important contributions in the field.
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1 Habit Formation

• We now discuss the Habit Formation models, still in the con-
text of a standard Lucas economy.

• We consider first a modification to Abel (1990) set up – with
external habit – and then we move to an internal habit for-
mation model.

2 External Habit with Abel (1990) preferences

• Consider a standard pure-exchange economy (Lucas (1978))

populated by a continuum of identical investors with utility

function

u(Ct,Xt) =
(Ct/Xt)

1−γ

1 − γ
.

where γ is the coefficient of relative risk aversion, φ the dis-
count rate and Xt is the habit level discussed below.

• I assume that total log endowment (aggregate consumption)

evolves according to the process

det = θtdt + σdB1
t

• Consumption data suggest a small predictability compoenent

in expected consumption growth.2 Let’s assume the drift rate

of aggregate endowment is assumed to evolve according to the
2 Using data from 1947 - 2002, the log-likelihood of a constant drift is 520, while the one with time

varying drift is 834. Although a log-likelihood ratio test does not have standard distribution in this case,
such a difference in log-likelihoods would most likely reject the null of constant drift at any confidence
level.
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mean reverting process

dθt = k
(
θ − θt

)
dt + σθdB

1
t

• Notice perfect markets, as dB1
t drives both the endowment

et and the expected growth rate of endowment θt.

– As shown in TN 3, this could be due to learning about θ

• We assume that the external habit Xt is given by a geometric

exponentially weighted average of past endowment realiza-

tions, that is

xt = logXt = x0e
−αt + α

∫ t
0
e−α(τ−t)eτdτ

• This implies that log habit follows the process

dxt = −α
(
x0e

−αt + α
∫ t
0
e−α(τ−t)eτdτ

)
dt + αetdt

= α (et − xt) dt

• Let yt = et − xt which then follows

dyt = (θt − αyt) dt + σdB1
t

• Finally, the investment opportunity set is made up of one
stock, the market, and one risk free bond.

• The price of stocks is given by

dSt = μSStdt + σSStdB
1
t
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• where μt and σ are determined in equilibrium

• The risk free bond yields an instantaneous rate of return rt.

2.1 The Maximization Problem and the State Price

Density

• The maximization problem of each agent is

max
(C,(ϕ0,ϕ))

U (C,X) = E
[∫ ∞

0
e−φtu (Ct,Xt) dt

]

• subject to

E
[∫ ∞

0
πtCtdt

]
≤ E

[∫ ∞
0
πtetdt

]

• where

πt = e(
∫ t
0 −(ru+1

2νuν
′
u)du+

∫ t
0 ν

′
udB

1
u)

• and

νt = σ−1
S (μS − rt)
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• As usual, define the Lagrangian

L (C,X, λ) = E
[∫ T

0
e−φtu (Ct,Xt) − λ (πtCt − πtet) dt

]
(1)

• Here there is nothing different from the set up in TN2, because
the agent takes Xt exogenously given.

• Thus, we have that

uC (Ct,Xt) = λπte
φt

• holds here too. We can renormalize λ = 1, and keep going.

• In other words, we can write the equilibrium stochastic dis-

count factor as

πt = e−φt−γct+(γ−1)xt = e−φt−γyt−xt = e−φt+(1−γ)yt−ct

• where, of course, we have ct = et.

2.2 The Price of Assets

• We now move to price assets. Consider now an asset that

pays the dividend

Dt = Cβ
t H

βh
t

where Ht is a random variable following a stationary stochas-

tic process

dht = −khhtdt + σhdBt

where ht = log (Ht).
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• Campbell (1986) and Abel (199?) interpret β as a measure
of leverage.

• Bansal et al refer to β as consumption leverage. Notice that
since δt = βct + βhht, and ht is stationary, the assumption
is simply that dividends and consumption are cointegrated
series. Bansal et al provide evidence to this effect. Men-
zly, Santos and Veronesi show that for a number of industry
portfolios it is possible to reject no cointegration against the
alternative that the cointegrating vector is exactly (1,−1),
implying β = 1.

• Finally, notice that β = 0 = βh yields the price of consol
bond paying a unit of consumption good every period.

• Moving forward, let δt = log (Dt) be the log dividend. We

have that the dividend of this asset follows the process

dδt = βdct + βhdht

= (βθt − βhht) dt + σδdB

where σδ = βhσh + βσc. Thus, β regulates the long-term

covariance ofDt and consumptionCt, while the instantaneous

covariance is given by

Cov (dδt, dct) = βσ2
c + βhσhσ

′
c

• The price of such an asset is given by

St = Et

⎡⎣∫ ∞
t

πτ
πt
Dτdτ

⎤⎦
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=
1

πt
Et

[∫ ∞
t
e−φτ−γyτ−xτ+βcτ+βhhτdτ

]

=
1

πt
Et

[∫ ∞
t
e−φτ+(1−γ)yτ+(β−1)cτ+βhhτdτ

]

• We now make use of the following standard lemma to obtain
the value of the asset:

• Lemma 1: Define zt = (1 − γ) yt+(β − 1) ct+βhht, which

then follows the process

dzt = ((β − γ) θt − (1 − γ)αyt − khβhht) dt

+ ((β − γ)σc + βhσh) dBt

Consider the system Nt = (zt, yt, θt, ht) which follows the

linear process

dN = (AN + BNN) dt + ΣdB

with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

kθ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − (1 − γ)α β − γ −βhkh
0 −α 1 0

0 0 −k 0

0 0 0 −kh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

and Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(β − γ)σc + σh
σc
σθ
σh

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We then have that

NT |Nt ∼ N (μN (Nt, τ) ,SN (τ))

where

μN (Nt, τ) = Ψ (τ)Nt + ζ (τ )

S (τ) =
∫ τ
0

Ψ (τ − s)ΣNΣ′
NΨ (τ − s)′ ds

ζ (τ) =
∫ τ
0

Ψ (τ − s)ANds

and

Ψ (τ) = U exp (Λ · τ )U−1

where,since BN has real and distinct eigenvalues, Λ is the

diagonal matrix with its eigenvalues on the principal diag-

onal, U is the matrix of the associated eigenvectors, and

exp (Λ · T ) is the diagonal matrix with eλiT in its ii−th po-

sition. Direct computations yields

Ψ (τ ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (γ − 1) (1 − e−ατ ) ψ13 (τ ) βh
(
e−khτ − 1

)
0 e−ατ 1

α−k
(
e−kτ − e−ατ

)
0

0 0 e−kτ 0

0 0 0 e−khτ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with

ψ13 (τ ) =
(γ − 1) e−ατ

α − k
− (γk − α− βk + βα) e−kτ

(α− k) k
+
β − 1

k

Proof : See e.g. Duffie (appendix). The computation of Ψ (τ )
from the formula is tedious, but straighforward.3

3 The lemma also shows that

Et [yt+τ ] = μ2 (τ ) = kθ

∫ τ

0

1
λ − k

(
e−k(τ−s) − e−λ(τ−s)

)
ds
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• From this Lemma, the price of the asset is simply

St =
1

πt
Et

[∫ ∞
t
e−φτ+zτdτ

]

• The Lemma implies that

zτ ∼ N (μ1 (N, τ) , S1 (τ ))

with

μ1 (τ ) = zt + (γ − 1)
(
1 − e−ατ

)
yt + ψ13 (τ) θt

+βh
(
e−khτ − 1

)
ht + kθψI13 (τ)

with

ψI13 (τ ) =
(γ − 1)

α− k
Qλ (τ)−(γk − α− βk + βα)

(α− k) k
Qk (τ )+

β − 1

k
τ

• Appealing to Fubini’s theorem, we can compute easily the

price of the asset from this result: In fact we obtain

St =
1

πt

∫ ∞
t
e−φτEt [e

zτ ] dτ

=
1

πt

∫ ∞
t
e−φτeμ1(τ−t)+1

2S1(τ−t)dτ

= e−(1−γ)yt+ct+zt ∫ ∞
t
e(γ−1)(1−e−ατ)yt+ψ13(τ)θt+βh(e−khτ−1)ht+Q0(τ)dτ

= eβct+ht
∫ ∞
t
e(γ−1)(1−eατ )yt+ψ13(τ)θt+βh(e−khτ−1)ht+Q0(τ)dτ

= kθ
1

λ − k

(
1− e−kτ

k
− 1 − e−λτ

λ

)
−→ kθ

λ− k

(
1
k
− 1
λ

)
=

1
λ
θ
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with

Q0 (τ) = −φτ + kθψI13 (τ) +
1

2
S1 (τ)

• Finally, we can write simply

St = DtG (yt, θt, ht)

with

G (yt, θt, ht) =
∫ ∞
t
e(γ−1)(1−e−ατ)yt+ψ13(τ )θt+βh(e−khτ−1)ht+Q0(τ )dτ

• Below, I calibrate the economy to various β’s and βh’s

2.3 The Risk Free Rate

• Before moving on, it is interesting to see the implications for

the riskless rate: we have

dπt/πt = −φdt− γdyt +
1

2
γ2dy2 − dxt

= −φdt− γ ((θt − αyt) dt + σcdBt)

+
1

2
γ2σcσ

′
c − α (ct − xt) dt

=

⎛⎝−φ− γ (θt − αyt) +
1

2
γ2σcσ

′
c − α (ct − xt)

⎞⎠ dt
−γσcdBt

• yielding
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rt = −Et

⎡⎣dπt
πt

⎤⎦ = φ+ γ (θt − αyt) + αyt − 1

2
γ2σcσ

′
c

= φ + γθt + (1 − γ)αyt − 1

2
γ2σcσ

′
c

• That is, a high yt implies a low interest rate rt when γ > 1.

• The intuition is as follows: Recall that

yt = ct − xt = log

⎛⎝Ct
Xt

⎞⎠

• The representative agent here wants to smooth out Ct/Xt,
that is, the consumption over habit, as its preferences are
defined on this ratio.

• Thus, if today Ct/Xt is high it means that this ratio will be
lower in the future, due to mean reversion.

• This implies the agent wants to decrease consumption today
relative to habitXt. That is, it must increase savings, driving
the interest rate rt down.

• From Lemma 1, since (θT , yT ) |(θt,yt) ∼ N
(
μ2,3 (τ ) ,S23 (τ)

)
we obtain that its unconditional value is

E [rt] = φ + γE [θt] + (1 − γ)αE [yt] − 1

2
γ2σcσ

′
c

= φ + γE [θt] + (1 − γ)E [θt] − 1

2
γ2σcσ

′
c

= φ +E [θt] − 1

2
γ2σcσ

′
c
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• This formula gives hope to find a low interest rate.

• What about its time variation? We have

drt = γdθt + (1 − γ)αdyt

• So that the diffusion part of the interest rate is given by

σr = γσθ + (1 − γ)ασ

• Notice that because dθt and dyt are perfectly correlated, we
can set the instantaneous volatility of the interest rate to zero
by choosing appropriately the preference parameter γ and α.

• In particular

σr = 0 = γσθ + (1 − γ)ασc

• That is, by choosing

α =
γσθ

(γ − 1)σc

we can make the local volatility of the interest rate zero.

• Yet, the interest rate is not constant. In fact, we only have
achieved that is local volatility is zero, in the sense that it is
a process without Brownian shocks.
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• However, from Lemma 1, we know that unconditionally, rt is
normally distributed. Let Sij = limτ→∞[S (t)]ij , where S (t)
is given in Lemma 1 (this can be computed explicitly).

• Then, we have that the unconditional distribution of rf is

rf ∼ N
(
E [rf ] , γ

2S33 + (1 − γ)2 α2S22 + 2γ (1 − γ)αS23

)

• Unfortunately, as we shall see, to match the equity premium
we need a large γ, which will lead to a large distribution for
rf , the typical problem of habit formation models. Notice
that also S22 and S23 depend on α, so the distribution is in
fact rather complex.4

2.4 The Price of a Claim to Consumption

• The price of a contingent claim that produces consumption

is given by the special parametrization β = 1 and βh = 0,
4 In fact, it is easy to see that (for instance)

S23 (τ ) =
∫ τ

0

(Ψ (τ − s)ΣN )2ds

=
∫ τ

0

e−2λ(τ−s)σ2
cds+

(
1

λ − k

)2

σ2
θ

∫ τ

0

(
e−k(τ−s) − e−λ(τ−s)

)2

ds

+2
1

λ − k

∫ τ

0

e−λ(τ−s)
(
e−k(τ−s) − e−λ(τ−s)

)
σθσcds

= Q2λ (τ)σ2
c +

(
1

λ− k

)2

σ2
θ

(
Q2k (τ ) +Q2λ (τ ) − 2Q(k+λ) (τ )

)
+2

σθσc

λ − k

(
Q(λ+k) (τ) −Q2λ (τ )

)
As τ → ∞ we find

S23 =
1
2λ
σ2

c +
(

1
λ − k

)2

σ2
θ

(
1
2k

+
1
2λ

− 2
1

k + λ

)
+2

σθσc

λ − k

(
1

λ+ k
− 1

2λ

)
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yielding

St = CtG (yt, θt)

• with

G (yt, θt) =
∫ ∞
0
e(γ−1)(1−e−ατ)yt+ψ13(τ )θt+Q0(τ )dτ

• and

ψ13 (τ ) =
(γ − 1)

(
e−ατ − e−kτ

)
α− k

< 0 for all γ > 1.

Q0 (τ ) = −φτ + kθψI13 (τ ) +
1

2
S1 (τ )

ψI13 (τ ) =
(γ − 1)

α− k
(Qα (τ ) −Qk (τ))
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2.4.1 The Equity Premium and Volatility

• To obtain the equity premium, use Ito’s Lemma

dSt = GdCt + CdG = St (μS + σSdB)

• where

σS = (1 +Gy (yt, θt))σc +Gθ (yt, θt)σθ

• where

Gy (yt, θt) =
1

G

∂G

∂y

=
(γ − 1)

∫∞
0

(
1 − e−λτ

)
e(γ−1)(1−eλτ)yt+ψ13(τ)θt+Q0(τ )dτ

G
(2)

Gθ (yt, θt) =
1

G

∂G

∂θ

=
∫∞
0 ψ13 (τ ) e(γ−1)(1−eλτ)yt+ψ13(τ )θt+Q0(τ )dτ

G
< 0 (3)

• Thus, since

dπt/πt = −rtdt− γσcdB
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• we obtain

E [dR] = −cov
⎛⎝dRi

t,
dπt
πt

⎞⎠

= γ ((1 +Gy (yt, θt))σcσ
′
c +Gθ (yt, θt)σθσ

′
c)

• The first adjustment is positive, but the second is negative,
as Gθ (yt, θt) < 0.

• However, we expect Gy (yt, θt) to be “big” while we expect
Gθ (yt, θt) to be small.

• Similarly, the volatility of the stock is simply given by

σS = (1 +Gy (yt, θt))σc +Gθ (yt, θt)σθ

• Under the condition of perfect correlation between dθ and dc,

we have that the Sharpe ratio is constant and given by

SRt =
E [dR]

σS
= γσc

• In addition, we also have a little predictability of stock re-

turns. We can re-write the expected returns formula as

E [dR] = γσcσ
′
c + βpred (yt, θt)

C

S
where

βpred (yt, θt) = G× (Gθσθσ
′
c +Gyσcσ

′
c)
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2.4.2 Calibration

• We can estimate the process for consumption by a simple
application of Kalman filter, obtaining the values

Table I: Estimates of the Parameters of the Model

θ k σC σθ
0.0221 1.2325 0.0090 0.0046

• Notice that consumption growth has a lower volatility than
the one usually obtained, about 1.2%. Indeed, even in my
sample we have std (Δ log (C)) = 1.11%. The lower value
that I obtain is due to the assumed time variation in con-
sumption growth θt which partly decreases the estimated in-
stantaneous volatility of consumption.

• Of course, this makes the resolution of the equity premium
puzzle even more challenging, and even higher coefficients of
risk aversion than the usual ones have to be used.

• The following table shows a calibration exercise, for several
parameters for the intertemporal discount φ and the coeffi-
cient of risk aversion γ.5 The speed of mean reversion α has

5 One may wonder whether γ is indeed the coefficient of relative risk aversion in this setting. In fact,
it is, as the value function is given by

J (Wt, yt) = E

[∫ ∞

t

e−φ(τ−t)C
1−γ
τ /X1−γ

τ

1 − γ

]
=

1
1 − γ

E

[∫ ∞

t

e−φ(τ−t)e(1−γ)yτ

]
=

1
1 − γ

πtPte
φt =

1
1 − γ

X(γ−1)C−γ
t Pt

From Pt = CtG (yt, θt) we have C−γ
t = P−γ

t Gγ yielding the value function

J (Wt, Xt, yt) =
1

γ − 1

(
W

Xt

)1−γ

G (yt)
γ
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been chosen to ensure that the local volatility of the risk free
rate is zero.

Table II: Calibration Exercise

φ γ α rf σ (rf) E[dR] σS SR PD βpred

0.05 2.00 1.02 0.07 0.00 0.00 0.02 0.02 19.86 0.00

0.05 12.00 0.56 0.06 0.04 0.01 0.10 0.11 20.00 0.17

0.05 22.00 0.54 0.03 0.08 0.03 0.18 0.20 20.40 0.64

0.05 32.00 0.53 -0.01 0.12 0.07 0.25 0.29 21.07 1.44

0.05 42.00 0.52 -0.07 0.16 0.13 0.33 0.38 22.05 2.65

0.05 52.00 0.52 -0.15 0.19 0.19 0.41 0.47 23.37 4.35

0.07 2.00 1.02 0.09 0.00 0.00 0.02 0.02 14.27 0.00

0.07 12.00 0.56 0.08 0.04 0.01 0.09 0.11 14.37 0.12

0.07 22.00 0.54 0.05 0.08 0.03 0.17 0.20 14.65 0.44

0.07 32.00 0.53 0.01 0.12 0.07 0.24 0.29 15.12 0.99

0.07 42.00 0.52 -0.05 0.16 0.12 0.32 0.38 15.80 1.81

0.07 52.00 0.52 -0.13 0.19 0.19 0.40 0.47 16.73 2.97

0.09 2.00 1.02 0.11 0.00 0.00 0.02 0.02 11.11 0.00

0.09 12.00 0.56 0.10 0.04 0.01 0.09 0.11 11.18 0.09

0.09 22.00 0.54 0.07 0.08 0.03 0.16 0.20 11.39 0.33

0.09 32.00 0.53 0.03 0.12 0.07 0.23 0.29 11.75 0.73

0.09 42.00 0.52 -0.03 0.16 0.12 0.31 0.38 12.27 1.34

0.09 52.00 0.52 -0.11 0.19 0.18 0.38 0.47 12.98 2.20

• The implication of this analysis is that in order to match at
the same time equity premium, a low interest rate, we need
to choose the speed of mean reversion in habit appropriately.
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• Notice that we still need a high coefficient of relative risk
aversion, γ = 32 for instance, and thus we do not solve the
traditional puzzle.

• Yet, the model is able to deliver simultaneously a high equity
risk premium, and a low interest rate, with habit formation.
Instead, the distribution of interest rates is too large.

• Yet, the interest rate moves too much: the reason is that after
good news

2.5 Individual Securities

• We can use a similar methodology to obtain the volatility and
expected returns of individual securities.

• From the price of the asset, we can obtain its volatility func-

tion

σiS = σD +Gyσc +Gθσθ +Ghσh (4)

• Thus, the expected return of asset i is given by

Et

[
dRi

t

]
= γ (σD +Gyσc +Gθσθ +Ghσh)σ

′
c

• A conditional CAPM representation holds.

• Note that the claim to consumption is perfectly correlated
with consumption growth, and thus with the pricing kernel
πt.

• Indeed, recall that the volatility of the market is given by

σMS = σc +GM
y σc +GM

θ σθ (5)

• (the superscript “M” denotes “market”.
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• Since we can write

Et

[
dRi

t

]
= (βhσh + βσc +Gyσc +Gθσθ +Ghσh) γσc

• and the fact that

E
[
dRM

t

]
=

(
σc +GM

y σc +GM
θ σθ

)
γσc

• we have, simply

γσc =
1(

σc +GM
y σc +GM

θ σθ
)Et

[
dRM

t

]

• This we can be substituted into the previous expression, to

find

Et

[
dRi

t

]
= βiR (yt, θt, ht)Et

[
dRM

t

]
(6)

• where the beta is

βiR,t =
βhσh + βσc +Gyσc +Gθσθ +Ghσh

σc +GM
y σc +GM

θ σθ

=
cov

(
dRi

t, dR
M
t

)
var (dRm

t )

• This finding generates interesting questions:

1. For a plausible calibration, what is the variation in βiR,t?

2. There is a very large literature about conditional CAPM
models. Does this model fit the predictions?

3. Indeed, does this model imply that the unconditional
CAPM fails?
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• As for the last question, recall that even if the CAPM holds
conditionally, it may not hold unconditionally.

• This can be seen immediately from the conditional CAPM

representation (6): If we condition down (i.e. take uncondi-

tional expectation on the LHS and RHS, we obtain

E
[
Et

[
dRi

t

]]
= E

[
βiR,tEt

[
dRM

t

]]

or

E
[
dRi

t

]
= E

[
βiR,t

]
E

[
dRM

t

]
+ Cov

[
βiR,t Et

[
dRM

t

]]

• The βiR,t depends on the same state variables that affect the

conditional expectation Et

[
dRM

t

]
.

• Thus, the covariance term on the RHS is non-zero, and the
unconditional CAPM does not work.

• The above questions are interesting, but I am not aware of
any study that actually tackles them.
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2.6 External Habit: Campbell and Cochrane
(1999).

• A problem with previous setting is that the interest rate
moves too much.

• Remember that this is due to the time variation in log (Ct/Xt)
which the agent wants to smooth out.

– E.g. if log (Ct/Xt) is too low, the agent expects it to
increase in the future. This requires an increase in con-
sumption today, which increases borrowing and thus the
interest rate

• Since we need a large variation log (Ct/Xt) to generate a
sizable equity premium, we are in trouble.

• The problem is that as log (Ct/Xt) gets small, there is no
counteracting force that stops the agent from borrowing.

• This is due to the particular specification of preferences, in
which habit Xt enters as a ratio.

• Other specifications lead to additional terms, that restrict the
agent willingness of borrowing when Ct gets too close to Xt.
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• Constantinides (1990), Detemple and Zapatero (1991), Camp-

bell and Cochrane (1999) and others use the following repre-

sentation of habit. The representative agent maximizes

E
[∫ ∞

0
u (Ct,Xt, t) dt

]
, (7)

• where the instantaneous utility function is give by

u (Ct,Xt, t) =

⎧⎪⎪⎨⎪⎪⎩
e−ρt (Ct−Xt)

1−γ
1−γ if γ > 1

e−ρt log (Ct −Xt) if γ = 1
(8)

• This is the difference model.

• Intuitively, as Ct − Xt decreases, the agent is approacing
negative infinity utility.

• This will increase precautionary savings (buy bonds to de-
crease the probability that Ct hits Xt), which in turn de-
creases the interest rate rt.

• This effect goes against the intertemporal smoothing effect
discussed earlier, and it may stabilize the interest rate.

• However, the model above is not homogeneus, and thus it is
hard to work with.

• One additional problem is that in endowment economies it
is not possible to guarantee that Ct > Xt all the time, for
standard specification of habit Xt.
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• For instance, assume that consumption (endowment) follows

the geometric Brownian motion

dCt
Ct

= μcdt + σcdBt

• Assume also Xt is just a weighted average of past consump-

tion:

Xt = X0e
−αt + α

∫ t
0
e−α(τ−t)Cτdτ

• As we have seen

dX = α (Ct −Xt) dt

• Consider now the following quantity

St =
Ct −Xt

Ct
(9)

• Campbell and Cochrane (1999) call St the Surplus Con-
sumption Ratio: It is the percentage difference of consump-
tion above habit. We return on the interpretation later.

• Clearly, we must have St ∈ [0, 1]

• However, if we apply Ito’s Lemma to St we find

dSt =
(
−αSt + (St − 1) σ2

c

)
dt + (1 − St)

dCt
Ct
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• or, equivalently,

dS = k (S − St) dt + λ (St) dBt (10)

• where

k = μc − α− σ2
c

S =
(
μc − σ2

c

)
/k

λ (St) = (1 − St)

• Note that St is:

– Mean reverting: This is a consequence of habit formation
and the fact that Xt is slow moving.

– Perfectly correlated with innovations to consumption growth,
given by dBt.

– The volatility of surplus is time varying.

• Note also that St is bounded above: when St reaches 1, the
diffusion disappears, and the drift is negative. Thus, St is
dragged down.

• However, nothing stops St from going below zero: When St =
0, the diffusion is still positive (and in fact large). Although
the drift is also positive under the sensible assumption that
μc > σ2

c , there is a non-zero probability that St ≤ 0.

• This event of course is inconsistent with the preference spec-
ification.
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• Campbell and Cochrane (1999) had a great intuition: Let’s
specify (10) for log surplus st = log(St), and specify λ(st) in
a way to ensure St = exp(st) ∈ [0, 1].

• In addition, they specified λ(st) to obtain specific properties
of the interest rate process rt (e.g. constant!)

• Unfortunately, their specification does not yield closed form
solutions for prices.

• I therefore follow Santos and Veronesi (2005) (in progress),
which generalizes the setting in Menzly, Santos, Veronesi (2004)
to the power utility case.

• All of the effects that Campbell and Cochrane (1999) talk
about in their paper show up in our setting too.

• To introduce the methodology, consider first the stochastic

discount factor implied by the model

πt = e−ρt
∂u (Ct,Xt)

∂Ct
= e−ρt (Ct −Xt)

−γ = e−ρtC−γ
t S−γ

t

• The surplus consumption ratio acts as a “preference shock”,
as it changes the curvature of the utility function, given by
γS−1

t .

• In other words, it induces a time variation in risk preferences
of the representative agent.

• Starting with the observation that the surplus is mean revert-
ing, Campbell and Cochrane (1999) consider the particular
monotonic transformation st = log(St) and model st as mean
reverting.
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• Santos and Veronesi (2005) use a different monotonic trans-

formation, namely

Gt = S−γ
t (11)

• Assume then that Gt is mean reverting

dGt = k (G−Gt) dt− α (Gt − λ)σcdBt (12)

• Note the following:

1. Gt is mean reverting, like St.

2. Gt is negatively perfectly correlated with innovations to
consumption dBt.

3. Gt is bounded below by λ > 1. That is, we restrict
Ct > Xt at all times.

• These are the same properties of Campbell and Cochrane
(1999).

2.6.1 Results

• Let’s start with the interest rate. Since πt = e−ρtC−γ
t Gt we

obtain immediately that the SDF follows the process

dπt
πt

= −rft dt− σπdBt,

• where
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rft = ρ+γμc−
1

2
γ (γ + 1)σ2

c+k (1 −GSγ)−γα (1 − λSγ)σ2
c

(13)

• and

σπ = γ + α (1 − λSγt ) σc. (14)

• Comments:

1. The first three terms in rt are standard.

2. The fourth term k (1 −GSγ) represents the intertempo-

ral substitution effect already discussed for Abel (1990)

Low St → high expected Sτ in future →
→ Borrow to increase Ct → rt high

3. The last term −γα (1 − λSγ) represents an additional

precautionary savings term:

Low St → higher probability Cτ = Xτ in the future →
→ Save more today → rt low

4. Campbell and Cochrane (1999) choose parameters so that
these two effects cancel each other → constant rt

– We could do the same here, but unfortunately the
model does not have enough flexibility.

– If we exactly fix rt we won’t be able to match other
moments of returns
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5. The volatility of the stochastic discount factor now de-

pends on Sγt

Low St → higher curvature of the utility function γS−1
t →

→ Higher aversion to risk → Higher price of risk

• Coming to the stock price of a consumption claim, we have

Pt = Et

⎡⎣∫ ∞
t

⎛⎝πτ
πt

⎞⎠Cτdτ
⎤⎦ (15)

• Substituting, we obtain

Pt = Cγ
t S

γEt

[∫ ∞
t
e−ρ(τ−t)C1−γ

τ Gτdτ
]

(16)

• It could be useful to show the steps to obtain a closed form
solution (the details are in the appendix)

1. Define

Mt = C1−γ
t Gt and Nt = C1−γ

t

2. Use Ito’s Lemma to obtain the law of motion of both Mt

and Nt. It turns out that if we define Zt = (Mt,Nt), we

can write

dZt = AZtdt + ΣtdBt

where A is explicitly given in the appendix.
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3. This implies

Et [Zτ ] = UE (τ − t) U−1Zt

where U is the matrix of eigenvectors of A, and E (τ ) is
the diagonal matrix with [E (τ )]ii = eωiτ−t where ωi is
the eigenvalue of A.

4. Thus

Et [Mτ ] = (1, 0)UE (τ − t) U−1Zt

=
2∑
i=1

2∑
k=1

u1ie
ωi(τ−t)u−1

ik Zk,t

5. Use Fubini, and this expectation to solve explicitly for the

integral

Pt = Cγ
t S

γ
t

∫ ∞
t
Et

[
e−ρ(τ−t)Mτ

]
dτ

= Cγ
t S

γ
t

2∑
i=1

2∑
k=1

u1i

(∫ ∞
t
Et

[
e(ωi−ρ)(τ−t)

]
dτ

)
u−1
ik Zk,t

= Cγ
t S

γ
t

2∑
k=1

⎛⎜⎝ 2∑
i=1

u1iu
−1
ik

ρ− ωi

⎞⎟⎠Zk,t

= Cγ
t S

γ
t

(
b1C

1−γ
t Gt + b2C

1−γ
t

)

= Ct (b1 + b2S
γ
t )
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6. Finally, compute explicitly b1 and b2, which turn out to

have simple formulas

b1 =
1

α1

b2 =
kG + α(1 − γ)λσ2

c

α1α2

with

α1 = ρ − (1 − γ)μc +
1

2
(1 − γ) γσ2

c + k + α (1 − γ)σ2
c

α2 = ρ − (1 − γ)μc +
1

2
(1 − γ) γσ2

c

• The implications for the Pt/Ct = b1 + b2S
γ
t are obvious:

– a higher surplus consumption ratio St translates in lower
risk preference, and thus a higher price.

• Note also that intertemporal smoothing hits here too. From
the form of b1 and b2, a high consumption growth μc translates
into a lower P/C ratio, as we saw with learning.

– Therefore, learning abour μc, for instance, will generate
the same problem it did for the standard power utility
case.

– Indeed, the same was true for the Abel (1990) specifica-
tion.
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• What about the volatility and the equity premium?

• By using Ito’s Lemma, we have

Et [dRt] = (γ + α (1 − λSγt ))σR (St) σc

σR (St) =

⎡⎢⎣1 +
b2S

γ
t (1 − λSγt )α

b1 + b2S
γ
t

⎤⎥⎦ σc.

• How does this model performs?

• The following are some statistics of the market portfolio:

Table I

Basic moments

Panel A: Summary statistics for the market portfolio

E(RM) vol(RM) rf vol(rf)

7.71% 16.25% 1.44% 3.08%

Panel B: Predictability regressions

Panel B-1: Sample 1948-2001

Horizon 4 8 12 16

ln
(
D
P

)
.13 .2 .26 .35

t−stat. (2.13) (1.65) (1.34) (1.29)
R2 .09 .10 .11 .14

Panel B-2: Sample 1948-1995

4 8 12 16

.28 .48 .63 .78

(4.04) (4.00) (4.49) (5.41)
.19 .32 .43 .54
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• A simple calibration of the economy (not much parameter

search here) is as follows:

Table III

Model parameters used in the simulation

Panel A: Consumption and preference parameters

μc σc γ ρ γ/S min{γ/St} α k

.02 .015 1.5 .072 48 27.75 77 .13
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Table IV

Basic moments in simulated data

Panel A: Summary statistics for the aggregate portfolio

E(RM ) vol(RM ) rf vol(rf)

9.96% 24.15% .91% 5.41%

Panel B: Predictability regressions

Horizon 4 8 12 16

ln
(
D
P

)
.73 .86 .88 .85

R2 .25 .30 .29 .27

• The model does well, although the volatility of interest rates
is a little too high

• The following Figures shows the source of the effects
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Conditional Volatility
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• Menzly, Santos and Veronesi (2004, JPE) use a similar model
(with γ = 1) to investigate the implications of time varying
risk preferences for predictability of individual stocks, or the
market in the presence of labor income.

– As we will see, they find that when the representative
agent has time varying risk preferences, as above, then
time variation in the expected dividend growth of a se-
curity generates a positive relation between expected re-
turns and price/dividend ratio.

• Santos and Veronesi (2005) takes after this intuition, and
discuss the implications for the value spread puzzle.
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2.7 Internal Habit:Detemple and Zapatero (1991).

• We now discuss briefly the Habit Formation models, still in
the context of a standard Lucas economy.

• The model I refer to is by Detemple and Zapatero (1991).

• Consider a standard endowment economy as in TN4 with
complete markets.

• Let security prices be driven by the usual Ito process

dS = ISμtdt + ISσtdBt

• Assume a risk-free asset following the Ito process rt and define

the market price of risk as

νt = σ−1
t (μt − rt1n)

• Assume that an agent’s endowment process et follows also an

Ito process

det = μe,tdt + σe,tdBt

• Consumption processes c are defined in the usual space of
square integrable processes and a portfolio process is given
by

(
ϕ0,ϕ

)
of dollar amounts invested in bonds and stocks.

Usual conditions apply.

• Preferences are described by the utility function

U (c, z) = E
[∫ T

0
e−φtu (ct, zt) dt

]
(17)
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• where

zt = z0e
−αt + δ

∫ t
0
e−α(t−s)csds (18)

• The index zt represents the standard of living of the decision
maker.

• Assume the usual regularity conditions to the instantaneous
utility function u (ct, zt). Namely,

1. Increasing and strictly concave in c and satisfies Inada
conditions for each z;

2. Decreasing in z;

3. Concave in (c, z) ;

• As usual, Iu (., z) represents the inverse of uc (., z).

• The index (18) has been introduced by Constantinides (1990)
in the literature.

• He investigates a production economy.

• By Ito’s lemma, we have

dzt = (δct − αzt) dt

• Hence, current consumption increases the standard of leaving
by δct and this decays at the rate α.

• Assuming δ = 0 effectively the model collapses to an exter-
nal habit formation model, where the “standard of living” is
exogenous. Although in the present approach it would be de-
terministic (zt = z0e

−αt), it turns out that all the results hold
if α is a stochastic process rather than a constant parameter.
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• By assuming various forms of u (c, z) one can recover other

models. For example,

u (c, z) =

⎧⎪⎨⎪⎩
v (c− z) if c ≥ z

−∞ if c < z
(19)

• has been proposed by Constantinides (1990), Campbell and
Cochrane (1999) and others.

• Detemple and Zapatero (1991) must make additional assump-
tions to prove existence.

• Assume

uc (et, z
e
t ) + δE

[∫ T
t
e−(φ+α)(τ−t)uz (eτ, z

e
τ) dτ

]
> 0

• where zet is the standard of living resulting from the consump-

tion of the aggregate endowment

zet = e0e
−αt + δ

∫ t
0
e−α(t−s)esds (20)

2.8 Optimal Consumption

• Maximizing utility subject to standard budget constraints is

known to be equivalent to the following (see TN4)

max
(c,(ϕ0,ϕ))

U (c, z)

• subject to

E
[∫ T

0
πtctdt

]
≤ E

[∫ T
0
πtetdt

]
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• where

πt = e(
∫ t
0 −(ru+1

2νuν
′
u)du+

∫ t
0 ν

′
udBu)

• As usual, define the Lagrangian

L (c, z, λ) = E
[∫ T

0
e−φtu (ct, zt) − λ (πtct − πtet) dt

]
(21)

• The additional difficulty is that if we choose the consumption
at time ct, the whole path zτ from [t, T ] is going to change.

• This must be taken into account!

• Since markets are complete, we can maximize the Lagrangian
state by state (that is, for each ω ∈ Ω).

• Given ω ∈ Ω, the problem becomes deterministic and we can
apply optimal control methods.

• This yields the FOC

uc (ct, zt) + δEt

[∫ T
t
e−(φ+α)(τ−t)uv (cτ , zτ) dτ

]
= λeφtπt

• Clearly, the second term on the LHS is the effect stemming
from the fact that an increase in consumption today would
increase the standard of leaving tomorrow (and in the future),
which it will make it hard to “beat.”

• Hence, increasing consumption today has a partially counter-
balancing effect because the agent anticipate the increase in
standard of living.
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• The parameter λ as usual is obtained by the budget constraint
along the optimal path (omitted!)

• Heuristically, we can then conclude from the above that pos-
itive innovations to endowment would generate a lower reac-
tion to consumption than when habit does not matter.

• In fact, now if the decision maker increases the consumption
rate, he/she is going to “suffer” in the future because of the
increase in standard of living.

• This interpretation was put forward in Constantinides (1990)
and Sundaresan (1989) in the context of constant opportunity
sets.

• Although it turns out this does not work in general, it does
under the linear model specified earlier.

• Define by

g∗t = λ∗eφtπt − δEt

[∫ T
t
e−(φ+α)(τ−t)uv (c∗τ , z

∗
τ ) dτ

]

• the total marginal cost of a marginal increase in consump-
tion.

• Then the optimal consumption must satisfy

uc (c∗t , z
∗
t ) = g∗t

• We then have the following result (Theorem 4.2, Detem-
ple and Zapatero (1991)): Under the assumption of a linear
model as in equation (19) we have
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1. The total marginal cost of consumption is given by

g∗t = λ∗eφtπt
(
1 + δEt

[∫ T
t
e−

∫ τ
t (ru+α−δ)dudτ

])

2. The optimal consumption policy is given by

c∗t = z0e
(δ−α)t + Iv (g∗t ) + δ

∫ t
0
e(δ−α)(t−τ)Iv (g∗τ ) dτ

where Iv (.) is the inverse of the marginal utility v (x)
introduced in (19).

3. The standard of living index is given by

z∗t = z0e
(δ−α)t + δ

∫ t
0
e(δ−α)(t−τ)Iv (g∗τ ) dτ

• Notice that g∗t is given by the state-price density λ∗eφtπt
(as usual) adjusted by a factor that reflects the importance
of habits in the investors’ evaluation of future consumption
streams.

• The idea is that the utility function v (c− z) described in
(19) gives infinite penalty when c < z. Hence, optimal con-
sumption is chosen to give zero probability for this happening
in the future.

• To ensure this, the optimal state-price density increases to
induce a lower current spending (the marginal utility of con-
sumption is decreasing with consumption).

• Notice that no habit formation (δ = 0 and z0 = 0) imply the
usual results obtained in TN3 and TN4.

• If we only assume δ = 0, then we are in the “external” habit

formation case, in which case we obtain

c∗t = z0e
−αt + Iv

(
λ∗eφtπt

)
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• The consumption is always greater than the standard of liv-
ing, by an amount that is determined by matching the marginal
utility to the (scaled) state price density.

2.9 Equilibrium

• We finally turn to the equilibrium.

• Unfortunately, solving for equilibrium in this case is more
difficult, because changes in consumption today affect the
whole consumption in the future.

• Therefore, one has to introduce the notion of “shocks” to
Brownian paths, which are well described by the tools of
Malliavin Calculus.

• We won’t go into it (if you are interested, read the paper).

• I will only briefly describe (heuristically) the result.

• Results (some of):

1. The equilibrium state price density is given by

πetλ = uc (et, z
e
t ) + δEt

[∫ T
t
e−(φ+a)(τ−t)uv (eτ, z

e
τ) dτ

]

2. The equilibrium interest rate is (no kidding!)

rt = φ− (πet)
−1

⎧⎨⎩ucc (t)μe,t +
1

2
uccc (t) σ2

e

+ucv (t) (δet − αzet )

+ δ
[
(α + φ)Et

[∫ T
t
e−(φ+α)(τ−t)uv (τ) dτ

]
− uv (t)

]}

where u (t) = u (et, z
e
t ) and so is for the other derivatives.
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3. The expected returns on the stock i can be rewritten as

E

⎡⎢⎣dSit
Sit

⎤⎥⎦−rt = ΓHt Covt

⎛⎜⎝dSit
Sit
, det

⎞⎟⎠−Covt
⎛⎜⎝dSit
Sit
, δY (t) dWt

⎞⎟⎠
where

ΓHt = − (πet)
−1

{
ucc (t) + δ

[∫ T
t
e−(φ+α)(τ−t)

+
[
ucv (t) + δuvv (t)α−1

(
1 − e−α(t−τ))] dτ ]}

and Y (t) is a process that depends on the time-varying
μe,t and σe,t.

• These are definitely messy formulas.

• However, they have some intuition.

• Consider for example the interest rate. The first line is stan-
dard and it has to do with risk aversion (or intertemporal
elasticity) and the prudence coefficient.

• We must add a second term to take into account the fact that
current consumption choices will affect future consumption.

• In fact, the agent is no longer so keen in substituting fu-
ture consumption for current consumption (that is, it has
an additional preference to push consumption to tomorrow).
Hence, the demand for bonds increases and the interest rate
decreases!

• The cross section of returns also is rather intuitive. Consider
first the case where μe,t and σe,t are constants.

• In this case (it can be shown that) Y (t) = 0 and we have the

standard C-CAPM

E

⎡⎢⎣dSit
Sit

⎤⎥⎦ − rt = etΓ
H
t Covt

⎛⎜⎝dSit
Sit
,
det
et

⎞⎟⎠
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• The risk premium is still given by the covariance of stock with
current endowment. This is because shocks to current endow-
ment determine the “future disutility” for given parameters
μe and σe. As a consequence, the usual hedging argument
goes through.

• What changes is the coefficient in front of the covariance
term.

• Compared to the standard iso-elastic case, etΓ
H
t is much big-

ger than the coefficient of risk aversion γt = −cucc (t) /uc (t),
because the state-price density is moving due to the disutili-
ties of future consumption.

• In addition, it is pointed out that even if the coefficient of
relative risk aversion γt is constant, the coefficient etΓ

H
t is

still stochastic. Hence, one cannot reject constant relative
risk aversion by the finding of different values across time.

• When μe,t and σe,t are not constants, then effectively the
CCAPM has a second term (difficult to quantify) that is due
to the covariance between returns and the shifts in the en-
dowment process.

• Since such shifts in the endowment process parameters also
affect the future disutilities, assets that correlate with those
may have trade at a premium (to hedge against those).
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3 Recursive Utility

• Before discussing the continuous time version of recursive util-
ity, called stochastic differential utility, it is useful to discuss
the discrete time counterpart.

• Consider first the iso-elastic utility function

U (C) =
C1−γ

1 − γ

• If C is stochastic, then γ = −CUcc/Uc is the coefficient of
relative risk aversion.

• In an intertemporal model, with deterministic consumption
C1, C2, ... ψ =1/γ instead measures also the elasticity of in-
tertemporal substitution.

• That is, the derivative of planned log consumption growth

with respect to log interest rate

ψ =
d (Ct+1/Ct) / (Ct+1/Ct)

dR/R

• This measures the willingness to exchange consumption today
for consumption tomorrow, given the interest rate R.

• There is no need to have such a tight relationship between
the relative risk aversion coefficient and the elasticity of in-
tertemporal substitutions.

• They are such different concepts (one applies to stochastic
variables, the other to deterministic consumption paths), that
it is important to keep them separated.



Pietro Veronesi Bus35909 Spring 2005 TN#4, page: 214

• This separation is accomplished by the use of recursive utility
functions.

• For example, consider a simple two period model. At time
t = 0 you know that your consumption is C0.

• However, at t = 1, you may receive the stochastic consump-
tion C̃1.

• Given the distribution of C̃1, you can think what is the level
of certain consumption at time t = 1 that indeed is equivalent
to C̃1.

• Say this is C1 = m
(
C̃1

)
. Clearly, the functionm (.) measures

the “risk-aversion.”

• Now, we can compare the consumption today C0 and the de-
terministic consumption tomorrow C1 by using some conven-
tional utility function defined on two commoditiesW (C1, C2).

• Clearly, the function W (C1, C2) measures only the substi-
tution preferences across the two periods and not the “risk
aversion” component.

• The recursive utility functions generalize the above.

• They are in fact defined by the following ingredients:

1. Vt is the “utility” at time t. Ṽt+1 denotes the fact that it
is stochastic in the future (as of time t or before).

2. A certainty equivalent function m (.|Ft) defined on the
future stochastic utility Ṽt+1

3. An aggregator function W (., .) defined on current con-
sumption and the certainty equivalent function.
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• Specifically, we have that the utility at time t is given by

Vt = W
(
Ct,m

[
Ṽt+1|Ft

])

• This preferences make it possible to separate risk aversion
from intertemporal substitution: As mentioned, the certainty
equivalentm

[
Ṽt+1|Ft

]
“records” the risk aversion component,

while the function W (x, y) records the relative preference for
a good x today or the “certainty equivalent” of utility Ṽt+1,
y, tomorrow.

• A typical parametric example for the aggregator function is

the CES function

W (x, y) = ((1 − δ) xρ + δyρ)
1
ρ

• On non-stochastic consumption, the elasticity of intertempo-
ral substitution is ψ = 1/ (1 − ρ). Instead, δ is the intertem-
poral discount factor.

• Notice that the function W (x, y) is homogeneous in x and

y, that is

W (ax, ay) = ((1 − δ) aρxρ + δaρyρ)
1
ρ

= aW (x, y)

• The standard form of Epstein-Zin-Weil recursive utility func-
tion is obtained by assuming a constant relative risk aversion
utility specification for the certainty equivalent.
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• That is, given a random variable x̃, assume

m (x̃) = E
[
x̃1−γ] 1

1−γ

• Putting things together and renaming variables, one obtains

Vt =

⎧⎪⎨⎪⎩(1 − δ)C
1−1/ψ
t + δ

(
Et

[
Ṽ 1−γ
t+1

])1−1/ψ
1−γ

⎫⎪⎬⎪⎭
1

1−1/ψ

(22)

• The parameter γ can be viewed as the standard constant
relative risk aversion parameter.

• Notice that if γ = 1/ψ, we obtain

V 1−γ
t =

{
(1 − δ)C

1−γ
t + δ

(
Et

[
Ṽ 1−γ
t+1

])}

• Solving forward, one readily obtains the standard time-separable

formulation

Vt =

⎧⎪⎨⎪⎩(1 − δ)
∞∑
j=0

δjC
(1−γ)

t+j

⎫⎪⎬⎪⎭
1

1−γ

• In this case, there is indifference on the timing of the resolu-
tion of uncertainty.

• In the general case (22), we instead have that γ > 1/ψ implies
a preference for early resolution of uncertainty (see Epstein-
Zin (1989)).
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3.1 Bellman Equation and Euler Equations

• Consider a representative agent endowed with an initial stocks
of the consumption good, w0, which can either be consumed
or allocated to assets.

• Let Rt+1 =
(
R1
t+1, .., R

n
t+1

)
be the gross return on n assets

between t and t + 1.

• Assume that the risk-free asset is included in the vector Rt+1.

• Let also ϑt be the fraction of wealth invested in the n assets
and It the value of any state-variable we may want to include
in the information set.

• We then have the wealth evolution process

Wt+1 = (Wt − Ct) · ϑt ·Rt+1 (23)

• The Bellman Equation takes the form

J (Wt, It) = max
Ct,ϑt

{(1 − δ)Cρ
t (24)

+δ
(
Et

[
J

(
W̃t+1, Ĩt+1

)α]) ρα⎫⎬⎭
1
ρ

(25)

• where for convenience I set ρ = 1 − 1/ψ and α = (1 − γ) .

• Notice that the homogeneity of the aggregator W (., .) and

the linearity of the budget constraint implies (the conjecture)

that J (W, I) is also homogeneous in wealth (that is, the prob-

lem is scale invariant), implying the form

J (Wt, It) = φ (It)Wt = φtWt (26)
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• Substituting (26) and the budget constraint (23) into (24) we

obtain

J (Wt, It) = max
Ct,ϑt

{(1 − δ)Cρ
t (27)

+δ
(
Et

[
φαt+1

(
RM
t

)α]) ρα (Wt − Ct)
ρ
⎫⎬⎭

1
ρ

(28)

= max
Ct,ϑt

{(1 − δ)Cρ
t + δμ∗ρt (Wt − Ct)

ρ}1
ρ (29)

• where μ∗t = Et

[
φαt+1

(
RM
t+1

)α] 1
α and where RM

t+1 = ϑt · Rt+1

is the return on the market portfolio.

• Maximizing over Ct yields the FOC

Cρ−1
t =

δ

1 − δ
(Wt − Ct)

ρ−1 μ∗ρt

• Also, the consumption is proportional to wealth (given the

homogeneity again) implying

Ct = ψ (It)Wt = ψtWt

• This implies

ψρ−1
t =

δ

1 − δ
(1 − ψt)

ρ−1 μ∗ρt (30)
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• or

μ∗ρt =
1 − δ

δ

⎛⎜⎝ ψt
1 − ψt

⎞⎟⎠
ρ−1

• Substituting into the value function, we obtain

J (Wt, It) = Wt

⎧⎨⎩(1 − δ)
1
ρ ψ

ρ−1
ρ

t

⎫⎬⎭ (31)

• Hence

φt = (1 − δ)
1
ρ

⎛⎝Ct
Wt

⎞⎠
ρ−1
ρ

• Substituting this into (30) one obtains

ψρ−1
t =

δ

1 − δ
(1 − ψt)

ρ−1Et

[
φαt+1

(
RM
t+1

)α] ρα

• or

Et

⎡⎢⎢⎢⎣
⎛⎜⎝δ

⎛⎝Ct+1

Ct

⎞⎠ρ−1

RM
t+1

⎞⎟⎠
α
ρ

⎤⎥⎥⎥⎦
ρ
α

= 1

• This is the Euler equation with respect to consumption.

• We now need to maximize with respect to ϑt as well the
expression in the Bellman Equation (27).

• Clearly, this maximization problem is equivalent to

max
ϑt

Et [(φt+1ϑt ·Rt+1)
α]

1
α
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• subject to ϑt · 1n = 1.

• Using the Lagrangian and taking the FOC with respect to ϑit
for all i and managing the equations, one obtains the neces-

sary conditions

Et

[
φαt+1

(
RM
t+1

)α−1 (
Ri
t+1 − R1

t+1

)]
= 0 (32)

• Now, by our earlier finding

φt+1 = (1 − δ)
1
ρ

⎛⎝Ct+1

Wt+1

⎞⎠
ρ−1
ρ

= (1 − δ)
1
ρ

⎛⎜⎝ Ct+1

Wt (1 − ψt)R
M
t+1

⎞⎟⎠
ρ−1
ρ

=
(1 − δ)

1
ρ

Wt (1 − ψt)
ρ−1
ρ

⎛⎜⎝Ct+1

RM
t+1

⎞⎟⎠
ρ−1
ρ

• and substituting all into (32), we find

Et

⎡⎢⎢⎣
⎛⎝Ct+1

Ct

⎞⎠
α
ρ (ρ−1) (

RM
t+1

)α
ρ−1 (

Ri
t+1 −R1

t+1

)⎤⎥⎥⎦ = 0 (33)

• In a more conventional way, we can also rewrite this as

Et

⎡⎢⎢⎣δαρ
⎛⎝Ct+1

Ct

⎞⎠
α
ρ (ρ−1) (

RM
t+1

)α
ρ−1

Ri
t+1

⎤⎥⎥⎦ = 1 (34)

• These are the Euler equations in the case of recursive utility.



Pietro Veronesi Bus35909 Spring 2005 TN#4, page: 221

• Notice that the case γ = 1/ψ implies α = ρ, which reduces

the Euler equation to

Et

⎡⎢⎣
⎛⎝Ct+1

Ct

⎞⎠ρ−1

Ri
t+1

⎤⎥⎦ = 1 (35)

3.1.1 Jointly Log-Normal Returns

• We can use the Euler equations to obtain implications for
stock returns.

• When consumption growth and returns are jointly log normal,
we can solve for excess returns.

• First, from the Euler equation the risk-free rate must satisfy

Rf
t+1 =

1

Et

[
δ
α
ρ
(
Ct+1
Ct

)α
ρ (ρ−1)

(Rt+1)
α
ρ−1

]

• Assuming that consumption growth and the market returns

are jointly log normal, we obtain

rft = log
(
Rf
t

)
= φ +

1

2

⎛⎝α
ρ
− 1

⎞⎠σ2
m − 1

2

α

ρψ2σ
2
c +

1

ψ
E [d log (Ct+1)]

= φ+
1

2

α

ρ

⎛⎝σ2
m − 1

ψ2σ
2
c

⎞⎠ − 1

2
σ2
m +

1

ψ
E [d log (Ct+1)]

• We discover that the risk free rate depends on the discount
rate φ, on the elasticity of intertemporal substitution ψ and
the coefficient of risk aversion γ.

• An increase in the elasticity of substitution ψ increases ρ =
1 − 1/ψ and hence tend to decrease the equilibrium interest
rate (but it is not necessarily true).
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• Intuitively, if one is really inelastic about consuming today or
tomorrow, he/she must be induced to exchange consumption
by a large interest rate.

• Similarly, an increase in the coefficient of risk aversion γ de-
creases α = (1 − γ) and hence the interest rate rft . Intu-
itively, again, a higher risk aversion increases the demand for
bonds and hence lowers the interest rate.

• When γ = 1/ψ we have the opposite result: An increase in
risk-aversion increases the interest rate because it decreases
the elasticity of intertemporal substitution.

• Similarly, one also obtains that the risk-premia on the various

assets are

Et

[
rit+1

]
− rft −

1

2
σ2
i =

α

ρψ
σic +

⎛⎝1 − α

ρ

⎞⎠σim (36)

• We obtain a mixture of the C-CAPM and the CAPM, where
the equity risk premium depends both on the covariance with
consumption and the covariance with the market itself.

• An increase in risk aversion γ decreases α = 1 − γ and has
the effect of decreasing the premium due to the covariance
between asset i and consumption and increasing the effect
coming from the covariance between asset i and the market.

• The same for an increase in the elasticity of intertemporal
substitution.

• The presence of both covariance terms is clearly an effect
stemming from the fact that the stochastic discount factor
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now depends on both the return on the market and the con-
sumption growth.

3.1.2 Solving for an Equilibrium Model: Cecchetti-

Lam-Mark (1990 -1992) Set-up

• We now use the model to solve for equilibrium in a standard
Lucas (1978) set-up.

• The CLM model is an extension of Mehra-Prescott model
where there are a risky asset in positive net supply and a
riskless asset in zero net supply.

• Although CLM is set for the case γ = 1/ψ, it is easy to extend
the results for the general Epstein-Zin-Weil preferences. (See
e.g. Hung 1994)

• The risky asset (tree) pays dividends according to the process

Dt+1 = Dte
gt−1

2σ
2+σεt+1

• It is assumed that gt follows a n−state Markov chain with
states gi, i = 1, .., n and transition probabilities λij.

• Notice that in Mehra - Prescott original paper we have σ =
0.

• From above, the Euler equation for the Market Portfolio is

Et

⎡⎢⎢⎢⎣
⎧⎪⎨⎪⎩δ

⎛⎝Ct+1

Ct

⎞⎠ρ−1

Rt+1

⎫⎪⎬⎪⎭
α
ρ

⎤⎥⎥⎥⎦ = 1 (37)
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• where Rt+1 is the return on the market, given by

Rt+1 =
Pt+1 +Dt+1

Pt

• Because of the scale invariance of the problem, we can con-

jecture that the price of the asset is given by

Pt = ψ (gt)Dt

• For later use, define the parameter ψi = ψ
(
gi
)
.

• We can then rewrite the Euler equation as

Et

⎡⎢⎢⎣
⎧⎪⎨⎪⎩δ

⎛⎝Ct+1

Ct

⎞⎠ρ (1 + ψ (gt+1))

ψ (gt)

⎫⎪⎬⎪⎭
α
ρ
⎤⎥⎥⎦ = 1 (38)

• We can rewrite

Et

[
e−

α
ρφ+αgt−1

2ασ
2+aσεt+1 (1 + ψ (gt+1))

α
ρ

]
= ψ (gt)

α
ρ (39)

• where I set δ = e−φ.

• Since εt is assumed independent of the shocks to the gt, we

have

e−
α
ρφ+αgt−1

2α(1−α)σ2
Et

[
(1 + ψ (gt+1))

α
ρ
]
= ψ (gt)

α
ρ (40)

• Finally, suppose that today we hare in state i (there is perfect
certainty here).
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• Hence, we have

e−
α
ρφ+αgi−1

2α(1−α)σ2 n∑
j=1

λij
(
1 + ψj

)α
ρ = ψ

α
ρ
i (41)

• or
n∑
j=1

λij
(
1 + ψj

)α
ρ = ψ

α
ρ
i e

−(−α
ρφ+αgi−1

2α(1−α)σ2) (42)

• This clearly defines n (non-linear) equations in n unknowns
(the ψi’s)

• In the case of CLM (and Mehra and Prescott), we have γ =
1/ψ which implies α = ρ = 1 − γ

• We obtain the system of linear equations

n∑
j=1

λijψj − ψie
−(−α

ρφ+αgi−1
2α(1−α)σ2) = 1

• which yields the solution

ψ = (Λ− D (E))−1 1n

• CLM consider the case where n = 2, estimate the model using
standard ML techniques from consumptions and, given the
parameters, showed by simulations that the long-term mean
reversion of stocks (predictability) can simply be explained
by the above process.
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4 Stochastic Differential Utility

• We now “take the limit” and consider the continuous time
counterpart of the approach above.

• Consider the standard set up with d Brownian motions B
defined on a probability space (Ω, P,F), with the standard
filtration {Ft} (generated by Bt).

• Fix an horizon T ∈ (0,∞].

• The consumption processes lie in the space of square inte-
grable processes, denoted by L2

• The Stochastic Differential Utility U : L2 → R is defined by
two primitive functions

1. f : R+ ×R → R;

2. A : R → R;

• Let a consumption process c ∈ L2 be given.

• The utility process V is the unique Ito process (if well defined)

such that VT = 0 and

dVt =

⎡⎣−f (ct, Vt) − 1

2
A (Vt) σv,tσ

′
v,t

⎤⎦ dt + σv,tdBt (43)

• where σv,t is a Rd-valued, square integrable, progressively
measurable process.

• We may think of the various elements as follows

1. Vt is a “continuation utility” for the investor, given the
consumption process c;
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2. f (ct, Vt) is an “aggregator” similar to the one employed
in the discrete time case, with the difference that it is in
“differential form;”

3. A (Vt) is a measure of local risk aversion, as we used in the
recursive utility when we defined the “Iso-elastic” form for
utility function.

• If given a consumption process c, the stochastic differential

equation (43) is well defined, then the Stochastic Differential

Utility U is defined as

U (c) = V0

• the initial utility of (43).

• The pair (f, A) is called aggregator.

• Since VT = 0 and
∫
σv,tdBt is a martingale, we can rewrite

(43) as

Vt = Et

⎛⎝∫ T
t

⎡⎣f (cτ , Vτ) +
1

2
A (Vτ) σv,tσ

′
v,t

⎤⎦ dτ
⎞⎠ (44)

• There are a number of properties:

1. There are conditions under which (43) is well defined,
hence a utility U (c) exists;

2. However, a closed form solution for U (c) often is not
available;

3. The function U (c) is monotonic and risk averse (see
below) if A (.) ≤ 0 and f is jointly concave and increasing
in c;
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4. There exists a canonical representation;

5. The Bellman equation is well defined;

6. It partially disentangle intertemporal substitution from
risk aversion.

(a) From (44) if consumption is deterministic, then σv,t =
0 and hence intertemporal substitution must only de-
pend on f (c, V ) ;

(b) Risk attitudes then must then be embedded in A (.).

Given f (., .) and two functions A∗ (.), A (.), let U∗

and U be the utility functions corresponding to the

aggregators (f, A∗) and (f, A). (Notice that the “f”

is the same). If

A∗ (.) ≤ A (.)

then U∗ is more risk averse than U , in the sense that

any consumption process c rejected by U in favor of a

deterministic process c would also be rejected by U∗.
That is

U (c) ≤ U (c) ⇒ U∗ (c) ≤ U∗ (c)

(c) Notice that A (.) only establishes a comparative risk
aversion for given function f . So, it does not measure
the “absolute” level of risk aversion, nor can compar-
isons be made if f is not constant in the two aggrega-
tors.

• Some examples are in order:
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• Additive Utility: Consider the standard time-separable

case where the “continuation utility” V t is given by the ex-

pected future utility, discounted at the subjective rate φ :

V t = Et

[∫ T
t
u (cτ ) e

−φ(τ−t)dτ
]

(45)

• By Ito’s lemma, we have

dV t = (−u (ct) + φVt) dt + σvdBt

• for some σv. Hence, we can set

A = 0

f (c, v) = u (c) − φv

• to obtain the representation (43).

• Interestingly, there are other ordinally equivalent represen-
tations.

• For example, consider the following

f (c, v) = φ
u (c) − u (v)

u′ (v)
and A (v) =

u′′ (v)
u′ (v)

(46)

• It can be easily shown that the corresponding utility satisfies

Vt = u−1 (φV t) = u−1
(
Et

[
φ
∫ T
t
u (cτ ) e

−φ(τ−t)dτ
])

(47)
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• That is, U defined by (f, A) and U defined by
(
f , A

)
are or-

dinally equivalent, and hence represent the same preferences,

in the sense that for every two consumption processes c and

c′ we have

U (c) ≥ U (c′) ⇐⇒ U (c) ≥ U (c′)

• Kreps-Porteus (Epstein-Zin-Weil) Preferences: They

correspond to

f (c, v) =
φ

ρ

cρ − vρ

vρ−1
and A (v) =

α− 1

v
(48)

• Closed form expressions for the corresponding utility function
is not available.

• Notice that if in (46) we set u (c) = cρ/ρ, then we obtain
that f (c, v) in (48) and (46) are equal (but A(.)’s are not, in
general!).

• Since f (c, v) is what regulates intertemporal substitution, it
must be the case that the elasticity of substitution is the same
in the two cases, that is ψ = (1 − ρ)−1.

• By comparing A (.) in (48) and (46) we also see that they are
equal if α = ρ.

• In this case, we must obtain back the representation (47),
which is ordinally equivalent to (45).

• Hence, the case u (c) = cρ/ρ with α = ρ implies the standard
time-additive utility.
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• It can be shown that if α �= ρ, that the stochastic differential
equation for the utility process V is the limit as the time
interval goes to zero of the utility in discrete time, given in
(22).

4.1 Ordinally Equivalent Representations

• As we saw, there are ordinally equivalent representations.

• Then, it is useful to find a way to transform a complicated
problem into an easier one which yields the same solution.

• For example, in static utility maximization it is sometime
useful to take a positive transformation of the original utility
function to obtain an easier representation of preferences.

• We do the same here: Consider a twice-continuously dif-
ferentiable function χ : R → R, strictly increasing with
χ (0) = 0.

• Two utility functionsU and U are ordinally equivalent if there
exists such a χ such that U = χ ◦ U (that is, for each c, we
have U (c) = χ (U (c)) .)

• Two aggregators (f, A) and
(
f , A

)
are ordinally equivalent if

they generate ordinally equivalent utilities.

• We can see that two aggregators (f, A) and
(
f, A

)
are or-

dinally equivalent if there exists a change of variable χ such

that

f (c, v) =
f (c, χ (v))

χ′ (v)
for all (c, v) ∈ R+ ×R (49)

A (v) = χ′ (v)A (χ (v)) +
χ′′ (v)
χ′ (v)

(50)
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• Proof: Exercise for next time!

• This gives a very nice way of solving complicated problems.

• What is bothering of the SDU utility is the term A (v).

• For example, suppose I make you start with the representa-

tion

Vt = Et

⎛⎝∫ T
t

⎡⎣f (cτ , Vτ) +
1

2
A (Vτ )σv,τσ

′
v,τ

⎤⎦ dτ
⎞⎠

• where

f (c, v) =
φ

ρ

cρ − vρ

vρ−1
and A (v) =

ρ− 1

v

• It looks very complicated!

• However, we know that we can find a transformation such

that we can obtain the ordinally equivalent representation

V t = Et

⎛⎝∫ T
t
e−φ(τ−t)c

ρ
τ

ρ
dτ

⎞⎠

• Well, this looks simpler, compared to the previous one!

• The important difference is that A (.) = 0.

• It turns out that one can do this very often.

• In fact, from (50) we see we can find χ that makes A (.) = 0

by solving

χ′′ (x) = A (x)χ′ (x)
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• The solution to this is

χ (v) = C2 + C1

∫ v
v0
e
∫ u
v0 A(x)dxdu

• where v0 is arbitrary and C1 and C2 are two constants such
that C1 > 0 and χ (0) = 0.

• If V = χ ◦ V is integrable, then we must have

V t = Et

(∫ T
t
f (cτ , V τ ) dτ

)

• A clear simplification!

• In summary, given any aggregator (f, A), there exists an ordi-
nally equivalent aggregator

(
f , 0

)
, that is, such thatA (.) = 0.

The aggregator
(
f, 0

)
or f is called “normalized aggregator.”

• Notice that now both risk preferences and intertemporal sub-
stitution are “mixed up” in f . Hence, by doing the transfor-
mation one gains something (simpler formula for utility) and
loses something (difficult to interpret).

• The following procedure is recommended:

1. Start with the “economic” aggregator, such as Kreps-
Porteus, Epstein-Zin-Weil preferences in (48). This pro-
vides the interpretations of parameters;

2. Find χ that makes A (.) = 0 but keep in mind what

the parameters mean. For example, in the Kreps-Porteus

case, the normalized aggregator is (prove it!)

f (c, v) =
φ

ρ

cρ − (αv)
ρ
α

(αv)(
ρ
α−1)

(51)
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4.2 Asset Prices

• We now turn to the asset pricing implications.

• Let there be n-state variable

dXt = b (Xt, t) dt + a (Xt, t) dBt

• where b : Rn× [0, T ] → Rn and a :Rn× [0, T ] → Rn×d and
Bt is the d dimensional Brownian motion introduced earlier.

• Consider the value function J (x, w, t) denoting the maxi-
mum utility achievable in state x, with wealth w at time t.

• Let there be N securities, following the usual Ito processes

dSt = ISμ (Xt, t) dt + ISσ (Xt, t) dBt

• Let also r (x, t) be the interest rate in state x. Finally. Denote

the vector of excess returns by

λ (x, t) = μ (x, t) − r (x, t)1N

• If we denote by ϑt the (1 ×N) vector of fractions of wealth

invested in each asset (see TN1), the wealth equation is as

usual

dWt = [Wtϑtλ (x, t) +Wtr (Xt, t) − ct] dt+Wtϑtσ (Xt, t) dBt
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• For a normalized aggregator, the Bellman equation turns out

to be

sup
(c,ϑ)

D(c,ϑ)J (x, w, t) + f (c, J (x, w, t)) = 0 (52)

• where

D(c,ϑ)J (x, w, t) = Jt + Jxb+Jw (wϑλ+wr − c) +
1

2
tr (Σ)

• and where tr () is the “trace” operator (sum of diagonal ele-

ments) and

Σ =

⎛⎜⎝ a

wϑσ

⎞⎟⎠
′ ⎛⎜⎝ Jxx Jxw
Jwx Jww

⎞⎟⎠
⎛⎜⎝ a

wϑσ

⎞⎟⎠

• Notice that if

f (c, v) = u (c) − φv

• we obtain back

sup
(c,ϑ)

D(c,ϑ)J (x, w, t) + u (c) − φJ (x, w, t) = 0

• as in TN1.

• The simplicity of (52) is notable.

• However, it is difficult to solve the Bellman equation. It is
even difficult to guess what J (x, w, t) looks like in this case.
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• Recently, using martingale methods, Schroder and Skiadas
(1999) found the optimal portfolio allocations in a number of
standard simple cases.

• Here, we follow Duffie and Epstein (1992) and show that we
can still obtain interesting conclusions in terms of asset pric-
ing even without explicitly solving the Bellman equation.

4.3 A Two Factor CAPM

• Consider the FOC with respect to consumption.

fc = Jw

• Let ct = C (Xt,Wt, t) be the optimal consumption function.

• We can then differentiate the FOC with respect to w to obtain

Jww = fccCw + fcvJw

• Differentiating the FOC with respect to x yields

Jwx = fccCx + fcvJx (53)

• Consider now the FOC with respect to the portfolio vector
ϑ.

• From the Bellman equation these are

Jwwλ+Jwwσσ
′ϑ′w2 + σa′Jxww = 0
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• We can obtain the excess return vector λ as

−λ =
fcc
Jw
σσ′

c + fcvσσ
′ϑ′w +

fcv
Jw
σa′J ′

x (54)

• with

σc = Cxa + Cwwϑσ

• Notice thatσc is the diffusion function of consumptionC (Xt,Wt, t).
Hence, ΣRC = σσ′

c denotes the covariance of return with
consumption (assuming one representative agent).

• Also, given the optimal portfolio and the market clearing con-
dition that ϑ′W is the vector of values of all the securities,
we have that σ′ϑ′Wt is the volatility of the market returns.

• Hence, ΣRM = σσ′ϑ′Wt represents the covariance with re-
spect to the market returns.

• The third term can be interpreted in some cases. In the case

of KP preferences, the homogeneity of the problem makes it

possible to “guess”

J (x, w, t) = ψ (x, t)wυ

• for some υ and function ψ. Notice that in this case

Jw = υw−1J

Jwx = υw−1Jx
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• Hence, we can use (53) to find

fcc
(υw−1 − fcv)

Cx = Jx

• We can then write the last term in (54) as

fcv
Jw
σa′J ′

x =
fcvfcc

Jw (υw−1 − fcv)
σa′C ′

x

=
fcvfcc

Jw (υw−1 − fcv)
σσ′

c +
fcvfccCw

Jw (υw−1 − fcv)
σσ′ϑ′Wt

=
fcvfcc

Jw (υw−1 − fcv)
ΣRC +

fcvfccCw
Jw (υw−1 − fcv)

ΣMC

• We can finally write

λ = k1ΣRC + k2ΣMC

• This is a two factor model for the cross section of stock re-
turns.

• It can be shown that

k1 =
1

c

α

ρψ
and k2 =

1

w

⎛⎝1 − α

ρ

⎞⎠

• where ψ = (1 − ρ)−1. This finding should be compared with
(36). There is no difference, once one realizes the covari-
ances here are with respect to the level consumption and level
wealth (and not in percentage form).
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4.4 An Asset Pricing Formula

• How is the state price density related to the Stochastic Dif-
ferential Utility?

• We know that given a stock price process

dSt = ISμ (Xt, t) dt + ISσ (Xt, t) dBt

• we can define a market price of risk process

ν (Xt, t) = σ (Xt, t)
−1λ (Xt, t)

• and the state price density is just given by

πt = e(
∫ t
0 −(ru+1

2νuν
′
u)du+

∫ t
0 ν

′
udBu)

• We saw under complete markets that we could obtain a rep-

resentative agent such that

πt = e−φtUc (et)

• where Uc (et) is the marginal utility of the representative
agent.

• Finally, given any security paying a dividend rate δt, we have

that its price should be

St =
1

πt
Et

[∫ T
t
πτδτdτ

]
= Et

⎡⎢⎣∫ T
t
e−φ(τ−t)

Uc (eτ )

Uc (et) δτdτ
⎤⎥⎦
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• The question is whether we can find something analogous in
the case of stochastic differential utility.

• It turns out that given the normalized aggregator f , the

state-price density is given by

πt = exp
(∫ t

0
fv (cτ , Vτ) dτ

)
fc (ct, Vt) (55)

• Given this, one can the obtain the stock pricing formula

St =
1

πt
Et

[∫ T
t
πτδτdτ

]

= Et

⎡⎢⎣∫ T
t

exp
(∫ τ
t
fv (cs, Vs) dt

) fc (cτ , Vτ)

fc (ct, Vt)
δτdτ

⎤⎥⎦

• Future dividends are still discounted at the marginal rate of
substitution fc(cτ ,Vτ )

fc(ct,Vt)
, but they are taken to today by the expo-

nential term exp (
∫ τ
t fv (cs, Vs) dt). This reflects the trade-off

between consumption today and consumption tomorrow.

• Notice that in the case of time-separable preferences, we would
have fv (cs, Vs) = −φ obtaining the usual result!
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6 Appendix

External Habit: Santos and Veronesi (2005)

Proof of pricing function: Let β = 1 − γ and define

Mt = Cβ
t Gt

we then have

dMt = +βMt
dCt

Ct
+

1

2
β (β − 1)Mt

(
dC

C

)2

+ Cβ
t dGt + βCβ

t

dC

C
dG

= +βMtμc + βMtσcdB
1
t +

1

2
β (β − 1)Mtσ

2
c + Cβ

t

(
k
(
G−G

)
dt− α (Gt − λ)σcdBt

)
−αβCβ

t (Gt − λ)σ2
c

= −ρMt + βMtμc +
1

2
β (β − 1)Mtσ

2
c + k

(
GNt −Mt

)
dt

−αβ (Mt −Ntλ)σ
2
c + βMtσcdBt − α (Mt −Ntλ)σcdBt

with

Nt = Cβ
t

Thus

dNt = −ρNt + βNt
dC

C
+

1

2
β (β − 1)Nt

(
dC

C

)2

= −ρNt + βNtμ +
1

2
β (β − 1)Ntσ

2
c + βNtσcdBt

Overall, we have

dMt =
(
βμc +

1

2
β (β − 1) σ2

c − k − αβσ2
c

)
Mt +

(
kG+ αβλσ2

c

)
Nt + ΣM,tdB

1
t

dNt =
(
βμc +

1

2
β (β − 1) σ2

c

)
Nt + ΣN,tdBt

We can write this in a system

dZt = AZtdt+ ΣtdBt

where

A =

⎛⎝ (
βμc + 1

2
β (β − 1)σ2

c − k − αβσ2
c

) (
kG + αβλσ2

c

)
0

(
βμc + 1

2
β (β − 1)σ2

c

) ⎞⎠
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As usual, we have

Et [Zτ ] = UE (τ − t)U−1Zt

where U is the matrix of eigenvectors of A, and E (τ ) is the diagonal matrix with

[E (τ)]ii = eωiτ−t where ωi is the eigenvalue of A. Thus

Et [Mτ ] = (1, 0) UE (τ − t)U−1Zt

=
2∑

i=1

2∑
k=1

u1ie
ωi(τ−t)u−1

ik Zk,t

Apply fubini’s theorem and apply this to the pricing formula to obtain

Pt = Cγ
t S

γ
t

∫ ∞

t
Et

[
e−ρ(τ−t)Mτ

]
dτ

= Cγ
t S

γ
t

∫ ∞

t
Et

[
e−ρ(τ−t)

2∑
i=1

2∑
k=1

u1ie
ωi(τ−t)u−1

ik Zk,t

]
dτ

= Cγ
t S

γ
t

2∑
i=1

2∑
k=1

u1i

(∫ ∞

t
Et

[
e(ωi−ρ)(τ−t)

]
dτ
)
u−1

ik Zk,t

= Cγ
t S

γ
t

2∑
k=1

(
2∑

i=1

u1iu
−1
ik

ρ− ωi

)
Zk,t

= Cγ
t S

γ
t

(
b1C

1−γ
t Gt + b2C

1−γ
t

)
= Ct (b1 + b2S

γ
t )

where

bk =

(
2∑

i=1

u1iu
−1
ik

ρ− ωi

)
or

b =(1, 0) U (ρI − W)
−1

U−1

where W is the diagonal matrix with the eigenvalues of A on its principal diagonal.

However, note that we also have the equality

(ρI − A)−1 = U (ρI − W)−1 U−1

implying

b =(1, 0) (ρI − A)−1
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Since

(ρI −A)−1 =

⎛⎝ 1/α1
(kG+αβλσ2

c)
α1α2

0 1/α2

⎞⎠
with

α1 =
(
ρ− βμc −

1

2
β (β − 1) σ2

c + k + αβσ2
c

)
α2 =

(
ρ− βμc −

1

2
β (β − 1) σ2

c

)

Substituting β = 1 − γ, we then obtain

b1 =
1

α1

b2 =
kG + αβλσ2

c

α1α2

with

α1 = ρ − (1 − γ)μc +
1

2
(1 − γ) γσ2

c + k + α (1 − γ)σ2
c

α2 = ρ − (1 − γ)μc +
1

2
(1 − γ) γσ2

c
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Stochatic Differential Utility A few steps:

J (Wt, It) =

⎧⎪⎪⎨⎪⎪⎩(1 − δ)Cρ
t + (1 − δ)

⎛⎜⎝ ψt
1 − ψt

⎞⎟⎠
ρ−1

Wρ
t (1 − ψt)

ρ

⎫⎪⎪⎬⎪⎪⎭
1
ρ

(56)

=

⎧⎪⎪⎨⎪⎪⎩(1 − δ)

⎛⎜⎜⎝ψρtWρ
t +

⎛⎜⎝ ψt
1 − ψt

⎞⎟⎠
ρ−1

Wρ
t (1 − ψt)

ρ

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

1
ρ

(57)

= Wt

{
(1 − δ)

(
ψρt + ψρ−1

t (1 − ψt)
)}1

ρ (58)

= Wt

⎧⎨⎩(1 − δ)
1
ρ ψ

ρ−1
ρ
t

⎫⎬⎭ (59)

A few more steps

ψρ−1
t =

δ

1 − δ
(1 − ψt)

ρ−1Et

[
φαt+1

(
RM
t+1

)α] ρα (60)

ψρ−1
t =

δ

1 − δ
(1 − ψt)

ρ−1Et

⎡⎢⎢⎣(1 − δ)
α
ρ

⎛⎝Ct+1

Wt+1

⎞⎠(ρ−1)αρ (
RM
t+1

)α⎤⎥⎥⎦
ρ
α

(61)

ψρ−1
t = δ (1 − ψt)

ρ−1Et

⎡⎢⎢⎣
⎛⎜⎝ Ct+1

Wt (1 − ψt)R
M
t+1

⎞⎟⎠
(ρ−1)αρ (

RM
t+1

)α⎤⎥⎥⎦
ρ
α

(62)

ψρ−1
t = δEt

⎡⎢⎢⎣
⎛⎝Ct+1

Wt

⎞⎠(ρ−1)αρ
⎛⎜⎜⎝ RM

t+1(
RM
t+1

)1−1/ρ

⎞⎟⎟⎠
α⎤⎥⎥⎦

ρ
α

(63)

1 = Et

⎡⎢⎢⎢⎣
⎛⎜⎝δ

⎛⎝Ct+1

Ct

⎞⎠ρ−1

RM
t+1

⎞⎟⎠
α
ρ

⎤⎥⎥⎥⎦
ρ
α

(64)

Proof of ordinal equivalence.
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Consider the utility processes Vt and V t, each following

dVt =

⎛⎝−f (ct, Vt) − 1

2
A (Vt)σ

2
v,t

⎞⎠ dt + σv,tdBt

dV t =

⎛⎝−f (ct, V t) − 1

2
A (V t)σ

2
v,t

⎞⎠ dt + σv,tdBt

We want to find conditions on a tranformation χ makes the two

utilities ordinally equivalent, that is

V t = χ (Vt)

Apply Ito’s lemma to find

dV t = χ′ (Vt) dVt +
1

2
χ′′ (Vt) dV 2

t

=

⎛⎝−χ′ (Vt) f (ct, Vt) − 1

2
(A (Vt)χ

′ (Vt) − χ′′ (Vt)) σ2
v,t

⎞⎠ dt
+χ′ (Vt)σvdBt

=

⎛⎜⎝−χ′ (Vt) f (ct, Vt) − 1

2

⎛⎜⎝A (Vt)

χ′ (Vt)
− χ′′ (Vt)

[χ′ (Vt)]
2

⎞⎟⎠ (χ′ (Vt) σv,t)
2

⎞⎟⎠ dt
+χ′ (Vt)σvdBt

Hence, comparing the last two lines with the process for dV t

above, we find that the transformation χ must satisfy

χ′ (Vt) f (ct, Vt) = f (ct, χ (Vt))⎛⎜⎝A (Vt)

χ′ (Vt)
− χ′′ (Vt)

[χ′ (Vt)]
2

⎞⎟⎠ = A (χ (Vt))
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or

f (ct, Vt) =
f (ct, χ (Vt))

χ′ (Vt)

A (Vt) = χ′ (Vt)A (χ (Vt)) +
χ′′ (Vt)
χ′ (Vt)

χ (v) = C2 + C1

∫ v
v0
e
∫ u
v0 A(x)dxdu

= C2 + C1

∫ v
v0
e
∫ u
v0

(α−1)x−1dxdu

= C2 + C1

∫ v
v0
e

(α−1) log
(
u
v0

)
du

= C2 + C1

∫ v
v0
e

log

((
u
v0

)(α−1)
)
du

= C2 + C1

∫ v
v0

⎛⎝ u
v0

⎞⎠(α−1)

du

= C2 + C1

⎛⎝⎛⎝ u
v0

⎞⎠α v0

α

⎞⎠v
v0

= C2 + C1

⎡⎣⎛⎝ v
v0

⎞⎠α v0

α
− v0

α

⎤⎦

χ (0) = 0 = C2 − C1

[v0

α

]

C2 = C1

[v0

α

]

Hence

χ (v) = C2 + C1

⎛⎝ v
v0

⎞⎠α v0

α
− v0

α
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= C1

⎛⎝ v
v0

⎞⎠α v0

α

=
vα

α

Hence

χ′ (v) = vα−1

Notice then we have

v = (αχ (v))
1
α

So the aggregator must satisfy

f (c, v) =
f (c, χ (v))

χ′ (v)

where

f (c, v) =
φ

ρ

cρ − vρ

vρ−1

Hence, we want to find f such that

f (c, χ (v)) =
φ

ρ

cρ − vρ

vρ−1
χ′ (v)

=
φ

ρ

cρ − vρ

vρ−1

[
vα−1

]

=
φ

ρ

cρ − [αχ (v)]
ρ
α

[αχ (v)]
ρ−1
α

[
[αχ (v)]

α−1
α

]

=
φ

ρ

cρ − [αv]
ρ
α

[αv]
ρ−1
α

[
[αv]

α−1
α

]
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=
φ

ρ

cρ − [αv]
ρ
α

[αv]
ρ
α−1

where v = χ (v). Hence

f (c, v) =
φ

ρ

cρ − (αv)
ρ
α

(αv)(
ρ
α−1)




