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No Arbitrage and Term Structure Models

• Bond prices depend only on n factors Xt = (X1
t , X

2
t , ..., X

n
t )′

– Example 1: Macro Factors

– Example 2: Level, Slope and Curvature

• A zero coupon bond will have a price generically denoted by

Z (Xt, t; T )

• Assume Xt follows the joint process

dXt = m (Xt, t) dt + s (Xt, t) dWt (1)

– where Wt is a n dimensional vector of Brownian motions.

• Question: What is the price of a zero coupon bond Z (Xt, t; T )?

– No arbitrage condition imposes a restriction on zero coupon bonds of various maturities.

– These restrictions translate in particular bond pricing formulas, depending on the specification

of the model (1)
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The No Arbitrage Argument

• Suppose we are long N1 = 1 bonds Z(Xt, t; T1) and we would like to hedge the position. How

can we do it?

• The long bond depends on n sources of risk (n Brownian Motions) =⇒ we need a set of n other

securities (other bonds) to hedge all of the risk.

• Consider then the portfolio

Πt = N1Z (Xt, t; T1) +
n+1∑
j=2

NjZ (Xt, t; Tj)

• What is the dynamics of the portfolio Πt?

– Ito’s Lemma applied to each bond i, Zi = Z(Xt, t; Ti), states

dZi = μZ,idt + σZ,idWt

– where

μZ,i =
∂Zi

∂t
+

∂Zi

∂X
m (Xt, t) +

1

2
tr

⎛⎜⎝ ∂2Zi

∂X∂X′s (Xt, t) s (Xt, t)
′
⎞⎟⎠

σZ,i =
∂Zi

∂X
s (Xt, t)



Pietro Veronesi Term Structure Models page: 5

A No Arbitrage Argument - 2

• We obtain

dΠt =
n+1∑
j=1

NjdZj = N′ μZdt + N′ σZ dWt

• Choose N so that last term drops out. I.e. impose

N′ σZ = 0 (2)

– There are n equations in n unknowns N2, ..., Nn+1 (recall that N1 = 1).

• Given (2), the last term is zero, and thus dΠt = N μZdt is risk free.

• =⇒ Impose no arbitrage =⇒ dΠt = rt Πtdt

• Substitute on both sides the relevant expressions:

N′ (μZ − rZt) = 0

• We do not have any degrees of freedom left. So, given (2), this condition is satisfied if and only

if there is a n vector λt (possibly that also depends on X or t), such that

(μZ − rZt) = σZ λt

((n + 1) × 1) ((n + 1) × n)(n × 1)
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The Fundamental Pricing Equation

• That is, for each bond, we have

μZ,i − rtZi =
n∑

j=1
λj

tσ
j
Z,i

– The bond return premium (=LHS) depends on loadings λj
t on the n sources of risk (BMs)

λj
t = Market Price of Risk Factor j

– Since this relation must hold for any bond (and in fact, any security that depends on Xt), we

can eliminate the subscript.

• The fundamental pricing equation is finally obtained by substituting back μZ and σZ

rtZ =
∂Z

∂t
+

∂Z

∂X
[m (Xt, t) − s (Xt, t) λt] +

1

2
tr

⎛⎜⎝ ∂2Z

∂X∂X′s (Xt, t) s (Xt, t)
′
⎞⎟⎠ (3)

• To summarize, the price of the zero coupon bond Z(Xt, t; T ) is the solution to the Partial

Differential Equation (3), subject to the final condition

Z (XT , T ; T ) = 1



Pietro Veronesi Term Structure Models page: 7

Risk Neutral Pricing

• Finally, how can we “solve” the PDE?

1. Analytically, if possible: Some of these PDEs have closed form solutions (e.g. Affine Models)

2. Numerically: Buy a PDE solver for the computer, and let the computer crunch out the solution.

3. Apply Feynman Kac Theorem to the PDE (3)

• Define

μ (Xt, t) = m (Xt, t) − s (Xt, t) λt (4)

• The solution to the PDE is given by the Feynman Kac Formula:

Z (Xt, t; T ) = EQ
[
e−

∫ T
t rsds × 1|Xt

]

• where EQ[·] denotes expectation with respect to the modified factor process

dXt = μ (Xt, t) dt + s (Xt, t) dWQ
t (5)

• The process (5) is called risk neutral process.

– The drift rate of the original process m has been adjusted for the market price of risk λt,

which, recall, determines the risk-return characteristics of risky bonds.
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Risk Neutral Process and Risk Natural Process

• The distinction between the Risk Neutral and the Risk Natural process is only in the drift.

Risk Natural =⇒ dXt = m (Xt, t) dt + s (Xt, t) dWt

Risk Neutral =⇒ dXt = (m (Xt, t) − s (Xt, t) λt) dt + s (Xt, t) dWQ
t

• We can pass from risk natural to risk neutral by defining the new Brownian Motion

dWQ
t = dWt + λt

• The market price of risk defines a new probability measure over which we take expectations.

– Example: We saw that a simple model with power utility and expected inflation implies

nominal rate dr = (α̃ − βrt) dt + σidWt

market price of risk λ = γσyρiy + σqρiq

– Given this information, the price of nominal bonds is determined as follows:

1. Define the risk neutral process: dr = (α̃ − βrt − σiλ) dt + σidWQ
t

2. Compute the price as Z(r, t; T ) = EQ
t

[
e−

∫ T
t rudu

]
3. This can be accomplished, equivalently, by solving the PDE

rZ =
∂Z

∂t
+

∂Z

∂r
(α̃ − βrt − σiλ) +

1

2

∂Z2

∂r2
σ2

i
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Affine Models

• Affine term structure models are a good example of the pricing methodology.

• The term “Affine” stems from the fact that everything we discussed is affine (= linear + constant)

in the risk neutral dynamics:

risk free rate rt = δ0 + δ′
1Xt

risk neutral drift μ (Xt, t) = K̃
(
θ̃ −Xt

)
diffusion term s (Xt, t) = Σ

√
St

• where St is a diagonal matrix, with diagonal element

[St]ii = αi + βi
′Xt

• The price of the bond is then given by the usual formula Z (Xt, t; T ) = EQ
[
e−

∫ T
t rsds

]

• Or, equivalently, it satisfies the PDE

rZ =
∂Z

∂t
+

∂Z

∂X
K̃
(
θ̃ − Xt

)
+

1

2
tr

⎛⎜⎝ ∂2Z

∂X∂X′ΣStΣ
′
⎞⎟⎠
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Solving for Bond Prices

• How do we solve for bond prices?

– Either solve the expectation or the PDE. For Affine Models, the PDE is “simpler”.

• Method of Undetermined Coefficients (sketch)

1. Conjecture: Z(X, t; T ) = eA(t;T )−B(t;T )′Xt

2. Compute derivatives:

∂Z

∂t
=

⎛⎜⎝∂A

∂t
− ∂B

∂t

′
Xt

⎞⎟⎠Z;
∂Z

∂X
= −B(t; T )Z;

∂2Z

∂X∂X′ = B(t; T )B(t; T )′Z

3. Substitute r and partial derivatives in PDE, and divide by Z

δ0 + δ′
1Xt︸ ︷︷ ︸ =

⎛⎜⎝∂A

∂t
− ∂B

∂t

′
Xt

⎞⎟⎠
︸ ︷︷ ︸

−B(t; T )′K̃
(
θ̃ −Xt

)
︸ ︷︷ ︸+

1

2

n∑
i=1

[Σ′B(t; T )]ii
(
αi + β′

iXt

)
︸ ︷︷ ︸

rt =
∂Z

∂t

∂Z

∂X
μ(Xt) tr

⎛⎜⎝ ∂2Z

∂X∂X′ΣStΣ
′
⎞⎟⎠
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Solving for Bond Prices

4. Collect terms and obtain two Ordinary Differential Equations:

⎛⎜⎝∂B

∂t

′
+ δ′

1 − B(t; T )′K̃ − 1

2

n∑
i=1

[Σ′B(t; T )]iiβ
′
i

⎞⎟⎠
︸ ︷︷ ︸

Xt =
∂A

∂t
− δ0 − B(t; T )′K̃θ̃ +

1

2

n∑
i=1

[Σ′B(t; T )]iiαi︸ ︷︷ ︸
= 0 = 0

– with final condition A(T ; T ) = 0 and B(T ; T ) = 0

5. Solve the ODEs (much easier than solving the PDE)

– From t = T we have the conditions B(T ; T ) = 0 and A(T ; T ) = 0

– Then work backwards, by discretizing time: Since

∂B(t; T )

∂t
≈ B(t; T ) − B(t − dt; T )

dt
;

∂A(t; T )

∂t
≈ A(t; T ) − A(t − dt; T )

dt

– we can write

B′(t − dt; T ) = B′(t; T ) +

⎛⎝δ′
1 − B(t; T )′K̃ − 1

2

n∑
i=1

[Σ′B(t; T )]iiβ
′
i

⎞⎠ dt

A(t − dt; T ) = A(t; T ) +

⎛⎝−δ0 − B(t; T )′K̃θ̃ +
1

2

n∑
i=1

[Σ′B(t; T )]iiαi

⎞⎠ dt
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Affine Term Structure Models

• Model encompasses many different models. For instance:

1. Vasicek: drt = k̃(θ̃ − rt)dt + sdWt

2. Cox Ingersoll and Ross: drt = k̃(θ̃ − rt)dt +
√

αrtdWt

3. Fong and Vasicek (Stochastic Volatility):

drt = k̃r

(
θ̃r − rt

)
dt +

√
vtdW1,t

dvt = k̃v

(
θ̃v − vt

)
dt + σ

√
vtdW2,t

4. Canonical A2(3) model:

– Largely used model with 3 factors, with 2 affecting volatility.

drt = k̃r (θt − rt) dt +
√

vtdW1,t

dvt = k̃v

(
θ̃v − vt

)
dt + σv

√
vtdW2,t

dθt = k̃θ

(
θ̃θ − θt

)
dt + σθ

√
θtdW3,t

• All of these models have the same form of the price of bonds: Z(Xt, τ) = eA(τ)−B(τ)′Xt

– where τ = T − t = maturity, and A(τ) = A(0; τ ), B(τ ) = B(0; τ ).

• There are technical issues: Not all of the parametrizations are feasible.

– We must guarantee volatility is always positive, for instance. Dai and Singleton (2000) provide

canonical representation with parameter restrictions.
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Estimation and the Market Price of Risk

• To estimate the model we have to use

1. The cross-sectional information of bond prices (yields) =⇒ Need of Risk Neutral Model for

Pricing

2. The time-series information of bond prices (yields) =⇒ Need the Risk Natural Model to

describe the true time series dynamics of factors

• To use both types of information, we need a specification of the market price of risk λt

– The specification of the market price of risk has been a hot topic of research in recent years.

• The most classic specification of the market price of risk (e.g. Dai and Singleton (2000)) has

λt =
√

Stλ1 (6)

– This is convenient: The risk natural drift is also affine:

m(Xt) = K̃
(
θ̃ −Xt

)
+
(
Σ
√

St

) (√
Stλ1

)
= K (θ − Xt)

• We will see that specification (6) however yields counterfactual implications.
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Estimation Issues

• Hard problem, as the conditional distribution of Xt+1 is hard to compute for general specifications.

• Many methodologies overcome the problem

– Simulation-based Efficient Method of Moments (e.g. Dai and Singleton (2000))

– Characteristic function computation (Singleton (2001))

– Quasi-Maximum Likelihood Estimation (very popular, as it is the simplest)

• Methodology: First, back out the factors Xt

– The yields from affine model is affine in factors (yet again)

Yt(τ ) = −log (Z(Xt, τ))

τ
= −A(τ)

τ
+

B(τ )′

τ
Xt

– Assume that exactly n yields are observed perfectly: τ 1, ...τn. Let Yt = [Yt(τ 1), ..., Yt(τn)]
′

– Defining H0 and H1 in the obvious way from the above relation, we have

Yt = H0 + H1Xt

– Given the parameters of the model Θ, invert the relation to obtain

X̂t = H−
1 1 (Yt − H0)
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Estimation Issues - 2

• Second, assume all of the other yields are estimated with error.

– Let Ŷt be vectors of yields that are imperfectly measured. Given X̂t, the errors are

εt = Ydata
t − Ŷt

– Assume errors are i.i.d. normal, cross-sectionally uncorrelated.

• Third, compute the likelihood function or the moments of interest.

– In QML, assume Xt+1 conditional on Xt is normally distributed.

∗ The mean and variance are known (see appendix Duffee (2002))

E[XT |Xt] =
(
I − e−K(T−t)

)
θ + e−K(T−t)Xt

V [XT |Xt] = Nb0N
′ +

n∑
i=1

(
NbjN

′N−1
j,i

)

∗ where all of the quantities are matrices known in closed form.

– From here, the conditional distribution of Yt+1 is obtained from the change in variable

fY (Yt+1|Yt) =
1

|det(H1|fX(Xt+1|Xt)

– Add the likelihood for the observation errors, and we are done.
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Predictability of Bond Returns and Affine Models

• We saw that bond returns are strongly predictable.

• Moreover, the predictability seems to stem mainly from the slope of the term structure.

– In particular, the strong volatility of yields does not seem to predict return at all.

• Duffee (2002) reports the following regression results, confirming the empirical findings in the

earlier lecture.
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Source: Duffee (2002)
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Predictability of Bond Returns and Affine Models

• What is the expected return of bond returns?

– As discussed earlier, the premium is given by

E[dZ − rZ] = E
[
μZ,i − rtZi

]
= σZ,iλt

– From the affine structure, the diffusion term is

σZ,i =
∂Zi

∂Xt
s(Xt) = −ZiB(τ )′Σ

√
St

– The percentage expected return is then given by

Expected Excess Return = Et

⎡⎣dZ
Z

− r

⎤⎦ = −B(τ )′Σ
√

Stλt

– Using the traditional market price of risk, we obtain

Et

⎡⎣dZ
Z

− rdt

⎤⎦ = −B(τ )′ΣStλ1 =
n∑

i=1
ai(τ ) + bi(τ )Xt

• The key insight is that bi,j(τ ) are different from zero (and thus time varying) only for those factors

Xj,t that affect the volatility of Xt, and thus the volatility of bond prices

• =⇒ Completely affine model imply a tight relation between expected returns and bond volatility.
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Duffee (2002) Evidence on Affine Models

• Duffee (2002) estimates a standard affine model (A2(3)) and shows that it does not forecast future

yields.

Comparison of In-sample Forecasting Performance (RMSE)

Source: Duffee (2002)
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Duffee (2002) Evidence on Affine Models

• Pricing errors in affine models are strongly related to slope, showing that even a 3 factor affine

model with time varying variance fails to capture independent variation in slope.

The Relation Between In-sample Forecast Errors and the Yield-curve Slope
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The Market Price of Risk

• Why the traditional specification of the market price of risk has the form λt =
√

Stλ1?

– Historical accident? Symmetry? (With this assumption, risk neutral and risk natural model

are both affine)

• Other specifications of the market price of risk may lead to better behavior of returns in the time

series

– Recall that this specification does not affect the risk neutral dynamics, and thus the pricing

formula remains identical.

• Duffee (2002) and Duarte (2003) propose generalizations to the market price of risk.

– The key is to delink the volatility of yields from expected returns.
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Essentially Affine Models

• Duffee (2002), in particular, proposes the “essentially affine model”

λt = S
1/2
t λ1 + Ŝ

−1/2
t λ2Xt

– where λ2 is an × n matrix, and Ŝt is a diagonal matrix such that

[Ŝt]ii =

⎧⎪⎨⎪⎩ αi + βiXt if min(αi + βiXt) > 0

0 otherwise

• Under the physical measure, the model is still affine. In fact the risk natural drift is now given by

m(Xt) = K̃
(
θ̃ − Xt

)
+ ΣS

1
2
t

⎛⎝S1
2
t λ1 + Ŝ

−1
2

t λ2Xt

⎞⎠
= Kθ −KXt

• where now

K = KQ −Σdiag(λ1)β + ΣÎλ2

Kθ = K̃θ̃ + Σdiag(λ1)α

• and Î is the identity matrix, but with zeros wherever [Ŝt][ii] = 0
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What is the Gist of Essentially Affine Models?

• It is useful to consider an example. Consider the Vasicek model

dr = kr (r − rt) dt + σrdWr,t

– The market price of risk under the standard setting is constant λ, thus RN process is simply

dr = kr

(
rQ − rt

)
dt + σrdWQ

r,t

– The model is the same as in previous Lecture. In particular, recall, it implies constant volatility

of bond returns and no predictability.

• Consider a new factor ft, following the square root process:

df = kf

(
f − ft

)
dt + σf

√
fdWf,t

– In the Vasicek model with the traditional market price of risk, this factor would have no impact

on bond prices.

– However, within the more general framework of “essentially affine models”, we can specify a

market price of risk so that bond prices will depend on ft as well.
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A Risk Factor in Vasicek Model

• Given Xt = (rt, ft)
′, the joint process has diffusion

s (X) = ΣS
1
2
t =

⎛⎜⎝ σr 0

0 σf

⎞⎟⎠
⎛⎜⎝ 1 0

0 ft

⎞⎟⎠
1
2

• Assume now the essentially affine market price of risk

λt = S
1
2
t λ1 + Ŝ

−1
2

t λ2Xt

• Since ft can reach zero, we have

St =

⎛⎜⎝ 1 0

0 ft

⎞⎟⎠ =⇒ Ŝt =

⎛⎜⎝ 1 0

0 0

⎞⎟⎠

• The risk neutral drift then is given by

μ(rt, ft) = m(rt, ft) − s (X) λt

= m −ΣS
1
2
t

⎛⎝S1
2
t λ1 + Ŝ

−1
2

t λ2Xt

⎞⎠

= m−
⎛⎜⎝ σrλ1,1

σfλ1,2ft

⎞⎟⎠−
⎛⎜⎝
⎛⎜⎝ 1 0

0 0

⎞⎟⎠
⎛⎜⎝ λ2,11 λ2,12

λ2,21 λ2,22

⎞⎟⎠Xt

⎞⎟⎠

= m−
⎛⎜⎝ σrλ1,1

σfλ1,2ft

⎞⎟⎠−
⎛⎜⎝ λ2,11 λ2,12

0 0

⎞⎟⎠
⎛⎜⎝ rt

ft

⎞⎟⎠
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The Factor Processes and Bond Price

• Some algebra shows

drt =
(
k̃r − k̃rrrt − k̃rfft

)
dt + σrdWr,t

dft =
(
k̃f − k̃ffft

)
dt + σf

√
ftdWf,t

• where

k̃r = krr − σrλ1,1; k̃rr = (kr + λ2,11) ; k̃rf = λ2,12

k̃f = kff ; kff = (kf + σfλ1,2)

• This is an affine model of the term structure, so bond prices will be

Z (rt, ft, τ) = eA(τ )−Br(τ )rt−Bf (τ )ft

• where A (τ) , Br (τ ) , Bf (τ ) satisfy some ODEs.

• Note, then, that the long term bond yield depends on f while, under the physical measure, the

short term rate r does not (as it follows a Vasicek Model).

yt (τ ) = −A (τ )

τ
+

Br (τ)

τ
rt +

Bf (τ)

τ
ft
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Expected Return

• The process for bonds (under the physical measure) is then given by

dZ

Z
= (rt + μZ)dt + σZdWt

• The diffusion term depends on the factor ft

σZ =

⎡⎣ 1

Z

∂Z

∂r
,

1

Z

∂Z

∂f

⎤⎦ΣS
1
2
t = −

[
Br (τ ) σr, Bf (τ) σf

√
ft

]

• Expected Return is given by

E

⎡⎣dZ
Z

⎤⎦− rt = μZ = σZλt =

⎛⎝ 1

Z

∂Z

∂r
,

1

Z

∂Z

∂f

⎞⎠ΣS
1
2
t

⎛⎝S1
2
t λ1 + Ŝ

−1
2

t λ2Xt

⎞⎠
= −{Br (τ ) σrλ1,1} − {Br (τ ) λ2,11} rt − {Br (τ ) λ2,12 + Bf (τ) σfλ1,2} ft

• Depending on market prices λ′
1s and λ′

2s, the expected return not only is time varying, but it can

even change sign.

• In particular, it is no longer the case that volatility of bond returns is so tightly linked to expected

return
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The Performance of Essentially Affine Models

Comparison of Out-of-Sample Forecasting Performance (RMSE)

Source: Duffee (2002)
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Figure 1: Summary of the estimated essentially affine A0(3) model
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Affine Models and Yield Volatility

• The best model discussed above, the essentially affine model A0(3) has a major drawback: The

volatility of yields is constant.

• The essentially affine model A1(3) also does relatively well in matching the properties of expected

return. Moreover, it implies a time varying volatility.

• Dai and Singleton (2003) provide simulation evidence, and compare it to the two factor A1(2) and

to the completely affine A1R(3) model.

Source: Dai and Singleton (2003)



Pietro Veronesi Term Structure Models page: 30

Gaussian Linear-Quadratic Models

• There is a tension between fitting the cross-section of bond returns, the time variation in expected

return, and the volatility of bond returns.

• The essentially affine model A1(3) seems to do well to match all of these conditional moments.

• A second very popular set of term structure models is specified as follows

risk free rate rt = δ0 + δ′
1Xt + X′

tΨXt

risk neutral drift μ (Xt) = K̃
(
θ̃ − Xt

)
diffusion term s (Xt) = Σ

• The (RN) process for the states then is simply Gaussian

dXt = K̃
(
θ̃ − Xt

)
dt + ΣdWt

• The PDE is the same as before

rZ =
∂Z

∂t
+

∂Z

∂X
K̃
(
θ̃ −Xt

)
+

1

2
tr

⎛⎜⎝ ∂2Z

∂Xt∂X′
t

ΣΣ′
⎞⎟⎠

• The bond price is

Z (Xt, t; T ) = eA(t;T )+B(t;T )′Xt+X′
tC(t;T )Xt

– where A (t; T ), B (t; T ) and C (t; T ) satisfy a set of ODEs.
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Physical Measure

• What about the physical measure?

– Since the volatility of the state variables s (Xt) = Σ is constant, there is now much more

flexibility in choosing the underlying market price of risk.

– The following is a popular choice

λt = λ0 + λ1Xt

– The risk natural process is

m (Xt) = μ (Xt) + s (Xt) λt

= K̃
(
θ̃ − Xt

)
+ Σλ0 + Σλ1Xt

= K (θ − Xt)

• Note that even if factors Xt are Gaussian with constant volatility matrix Σ, the model does imply

stochastic volatility for rates and yields.

• For instance, in a one factor model: rt = δ0 + δ1Xt + δ2X
2
t

• This implies

drt = (δ1 + 2δ2Xt) dXt

= (δ1 + 2δ2Xt)K(θ − Xt)dt + (δ1 + 2δ2Xt) ΣdWt
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Estimation Issues

• If we knew the factors Xt, estimation would be simple, as the conditional density is normal.

• However, unfortunately, there is not a one-to-one mapping between yields and factors

y (Xt, τ) = −A (τ)

τ
− B (τ )

τ

′
Xt − X′

t

C (t; T )

τ
Xt

• Estimation is typically performed by the Simulated Method of Moments (SMM).

• Leippold and Wu (2003) suggest the use of GMM, as the normality of X imply analytical formulas

for many moments of interest of yields y.
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The Performance of Linear Quadratic Models

• Linear quadratic models appear to be better able than essentially affine model to match important

properties of the term structure of interest rates.

• Brandt and Chapman (2002) study the essentially affine model A0(3) (discussed above), A1(3) as

well as the linear quadratic model QTSM(3), that is, with three factors.

• The key finding is that while all models do well in meeting unconditional premia and some pre-

dictability, the linear quadratic model does much better in matching the volatility of bond yields.

• In particular, in addition to the standard (LPY)

y(t + 1, τ − 1) − y(t, τ ) = φc + φτ (y(t, τ ) − y(t, 1)) /(τ − 1) + εt + 1, τ

• Brandt and Chapman (2002) also run the regression (LPV)

(y(t + 1, τ − 1) − y(t, τ ) − Et (y(t + 1, τ − 1) − y(t, τ)))2 = μ0,τ +
n∑

i=1
μi,τFi,t + ε(t + 1, τ)

• where Fi,t is PCA level, slope and curvature factors.
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The Performance of Essentially Affine Models

Table 6 (continued)

Panel B: LPY and LPV Regression Slope Coefficients.

A0 (3) A1 (3)
Sample Optimal WT Diagonal WT Optimal WT Diagonal WT

Moment Fitted Moment Fitted Moment Fitted Moment Fitted Moment
LPY Slopes

6-m −0.776 (0.503) −0.490 (0.567) −0.004 (1.534) −0.417 (0.713) −0.860 (0.168)
2-y −1.678 (0.969) −0.892 (0.811) −0.618 (1.094) −2.171 (0.509) −2.130 (0.467)

10-y −3.832 (1.750) −3.802 (0.017) −3.863 (0.018) −4.937 (0.632) −4.038 (0.119)

LPV Slopes

6-m on Level 0.140 (0.045) 0.000 (3.100) 0.000 (3.095) 0.069 (1.568) 0.130 (0.211)
6-m on Slope −0.164 (0.129) 0.001 (1.275) 0.000 (1.271) 0.041 (1.582) 0.051 (1.665)
6-m on Curv. 0.198 (0.186) −0.001 (1.068) −0.000 (1.064) 0.005 (1.034) 0.003 (1.047)

6-m on Level 0.089 (0.032) 0.000 (2.774) 0.001 (2.762) 0.044 (1.386) 0.075 (0.439)
6-m on Slope −0.092 (0.091) 0.001 (1.024) 0.001 (1.018) 0.038 (1.428) 0.034 (1.389)
6-m on Curv. 0.151 (0.152) −0.001 (1.000) −0.000 (0.995) −0.016 (1.101) −0.034 (1.220)

10-y on Level 0.031 (0.006) 0.003 (4.466) 0.033 (0.387) 0.022 (1.403) 0.031 (0.016)
10-y on Slope 0.012 (0.017) 0.002 (0.560) 0.004 (0.479) 0.017 (0.314) 0.012 (0.006)
10-y on Curv. 0.013 (0.030) −0.004 (0.555) 0.002 (0.362) −0.009 (0.738) 0.011 (0.057)

Source: Brandt and Chapman (2002)
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The Performance of Linear Quadratic Models

Table 7 (continued)

Panel B: LPY and LPV Regression Slope Coefficients.

Optimal WT Diagonal WT

Sample Fitted N-W Fitted N-W
Moment Std.Dev. Moment t-statistic Moment t-statistic

LPY Slope Coeff.

6-m −0.776 0.503 −0.598 0.353 −0.827 0.102
2-y −1.678 0.969 −0.228 1.496 −1.505 0.179

10-y −3.832 1.750 −1.843 1.136 −3.147 0.391

LPV Slope Coeff.

6-m on Level 0.140 0.045 0.124 0.361 0.125 0.335
6-m on Slope −0.164 0.129 −0.184 0.156 −0.092 0.559
6-m on Curv. 0.198 0.186 0.245 0.257 0.172 0.136

2-y on Level 0.089 0.032 0.089 0.022 0.084 0.144
2-y on Slope −0.092 0.091 −0.108 0.184 −0.119 0.305
2-y on Curv. 0.151 0.152 0.097 0.355 0.154 0.019

10-y on Level 0.031 0.006 0.029 0.307 0.030 0.129
10-y on Slope 0.012 0.017 0.017 0.325 0.020 0.497
10-y on Curv. 0.013 0.030 −0.007 0.674 0.011 0.076

Source: Brandt and Chapman (2002)
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Time Varying Risk Premia in a Habit Formation Model

• We have seen many models about the time varying risk premia.

– However, the basic representative agent model with power utility generates a constant market

price of risk.

– Thus, the question is what type of preferences generate time varying risk premia.

– Following Campbell and Cochrane (1999) and Menzly Santos and Veronesi (2004), Wachter

(2003) and Buraschi and Jiltsov (2007) have recently proposed to use habit formation prefer-

ences as a source of time varying market price of risk in fixed income models.

– I present the same model as in the earlier lecture notes, but with the external habit formation

of Pastor and Veronesi (2005), which leads to the Quadratic Linear model described earlier.

• The representative agent maximizes

E
[∫ ∞

0
u (Ct, Xt, t) dt

]
, (7)

• where the instantaneous utility function is give by

u (Ct, Xt, t) =

⎧⎪⎪⎨⎪⎪⎩
e−ρt (Ct−Xt)

1−γ

1−γ if γ > 1

e−ρt log (Ct − Xt) if γ = 1
(8)

• Xt is an external habit level, as in Campbell and Cochrane (1999).
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The Surplus Consumption Ratio Dynamics

• Consider now the following quantity

St =
Ct − Xt

Ct
(9)

• Campbell and Cochrane (1999) call St the Surplus Consumption Ratio.

• This is a key quantity in determining the properties of the market price of risk:

πt = e−ρt∂u (Ct, Xt)

∂Ct
= e−ρt (Ct − Xt)

−γ = e−ρtC−γ
t S−γ

t

• The surplus consumption ratio acts as a “preference shock”, as it changes the curvature of the

utility function: γS−1
t .

• Clearly, we must have St ∈ [0, 1]

– Problem: this cannot be ensured in endowment economies when Xt is an average of past

consumption.

• In addition, from first principles, St is:

– Mean reverting: This is a consequence of habit formation and the fact that Xt is slow moving.

– Perfectly correlated with innovations to consumption growth.

– The volatility of surplus is time varying.
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Campbell and Cochrane Solution

• Campbell and Cochrane (1999) had a great intuition:

– Specify the mean reverting dynamics for log surplus st = log(St)

– Specify the log surplus volatility λ(st) in a way to ensure St = exp(st) ∈ [0, 1].

• In addition, they specified λ(st) to obtain specific properties of the interest rate process rt

– Unfortunately, their specification does not yield closed form solutions for prices.

• Pastor and Veronesi (2005) simply use a different transformation of surplus consumption ratio and

obtain closed form formulas.

St = est

st = a0 + a1yt + a2y
2
t

dyt = ky (y − yt) dt + σydWc,t

• Choosing ai appropriately (in particular, a2 < 0) =⇒ st < 0 =⇒ St ∈ [0, 1].

• In addition, we must have ∂s(y)/∂y > 0, so that positive shocks to consumption dWc,t translate

in positive shocks to the surplus consumption ratio St.

– We need to have a1 + 2a2yt > 0. This restriction can be enforced with high probability, as yt

is normally distributed, and we have many free parameters.
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GDP growth and Inflation

• The rest of the model can be assumed as in the earlier lecture (with power utility).

• In particular, let ct = log(Ct) and qt = log(Qt) be log consumption and log CPI. Then

dct = gtdt + σcdWc,t

dqt = itdt + σqdWi,t

• Assume that Xt = (gt, it, yt)
′ follows the process the process

dXt = K (Θ − Xt) dt + ΣdWt

• Parameters must be chosen to make sure that gt and it do not depend on yt, as it would make

little economic sense.

• The SDF is given by

πt = e−ηt−γ(ct+a0+a1yt+a2y
2
t )−qt

• This gives the dynamics
dπt

πt
= −rtdt − σπdWc,t − σqdWq,t
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The Risk Free Rate and the Market Price of Risk

• The interest rate has a linear quadratic structure

rt = δ0 + γgt + it + δyyt + δyyy
2
t

• where δ0, δy and δyy are given in the appendix below.

• The market price of risk has also a linear structure:

σπ = λt = γ (σc + σy(a1 + 2a2yt))

• =⇒ The bond pricing formula must be the same as the one obtained earlier, with factors GDP/

consumption growth gt, expected inflation it and habit yt.

• This model has never been formally studied as a model of interest rates, as Pastor Veronesi (2005)

simply use it in a model of IPOs

– It may be interesting to calibrate the model to reasonable consumption based parameters and

see the implications for the term structure.
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Conclusion

1. Term structure models have gone through an exciting period of innovation in the last few years.

2. Researchers have become more and more interested in explaining the dynamics of interest rates,

rather than obtaining a nice “fit”

• The inability of standard affine models of explaining expected returns had frustrated many

researchers.

3. The key breakthrough (almost obvious in retrospect) was to change the specification of the market

price of risk

• Care needs to be applied here, as the market price of risk must be specified in a way to preserve

no-arbitrage opportunities. There are some technical restrictions that need to be satisfied.

4. Additional models also boil down to a specification of market price of risk that is not too tightly

linked to the dynamics of interest rates.

• E.g. Gaussian Linear Quadratic Models, Regime shifts and non-affine habit formation (Buraschi

and Jiltsov (2007)).

5. Yet, in all of these models, the factors are latent and are always estimated from yields. The next

step is to put back some macro-economics in the fixed income literature.
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Appendix

The constants in the interest rate model are

δ0 = η + γa1ky − 1

2

(
γ2σ2

c + γ2a2
1σ

2
y + σ2

q

)
− a1γ

2σyσc − a1γσyσqρcq − γσcσqρc,q + γa2σ
2
y

δy =
(
2γkya2 − γa1k − γ2a1a2σ

2
y − 2a2γ

2σyσc − 2γσyσqρcqa2

)
δyy = −2γka2 − 2γ2a2

2σ
2
y


