Topics in Dynamic Asset Pricing

Course Presentation.

Pietro Veronesi

University of Chicago Booth School of Business CEPR, NBER

Course Objectives

- This course has two objectives:
 - 1. Introduce students to the frontier of research in asset pricing: we will cover a number of models and methodologies have been recently developed in the literature to address intriguing empirical regularities.
 - 2. Teach students how to write coherent research papers: over the eleven weeks I will assign three research ideas that students have to developed into research papers (I provide tips). the TA and I will "referee" such papers providing then feedback on how papers should be written.
- We start by reviewing some (but not all) intriguing empirical regularities.

A Simple Benchmark Model (Lucas Tree Model)

• Aggregate dividends D_t are i.i.d.

$$\frac{dD_t}{D_t} = \mu_d dt + \sigma_d dB_t$$

- P_t = price of stock that is a claim on these dividends. r_t = risk free rate of return.
- A representative agent has infinite life, power utility over consumption, chooses C_t and asset allocation θ_t to

$$\max_{C_t,\theta_t} E_0 \left[\int_0^\infty e^{-\phi t} \frac{C_t^{1-\gamma}}{1-\gamma} dt \right]$$

• Equilibrium: $C_t = D_t$ and $\theta_t = 1 \Longrightarrow \mathsf{SDF} = \lambda_t = e^{-\phi t} C_t^{-\gamma}$

$$P_t = E_t \left[\int_t^\infty \frac{\lambda_\tau}{\lambda_t} D_\tau d\tau \right] = \frac{D_t}{R - \mu_d}$$

• where R =discount rate for risky stock

page: 4

Implications of Benchmark Model

- A large number of empirical regularities clash with this standard paradigm.
- 1. Equity premium puzzle: Stocks have averaged returns of about 7% over treasuries.
 - This number is high compared to the volatility of consumption, of about 1-2%.
 - The canonical model implies

Expected Excess Return $= \gamma$ Variance of Consumption Growth

 \bullet Even assuming that γ is large, say $\gamma=10,$ we have

Expected Excess Return = $10 \times (.02)^2 = 0.4\%$

• We are an order of magnitude off.

- 2. Volatility Puzzle 1: Return volatility (about 16 %) is too high compared to the volatility of dividends (about 7%).
 - The same classic canonical model has

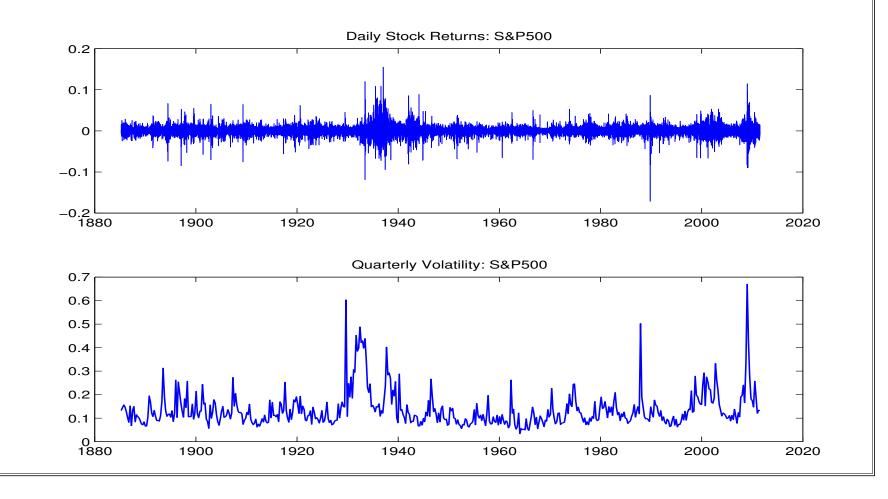
$$\frac{P_t}{D_t} = \mathsf{Constant}$$

• This implies

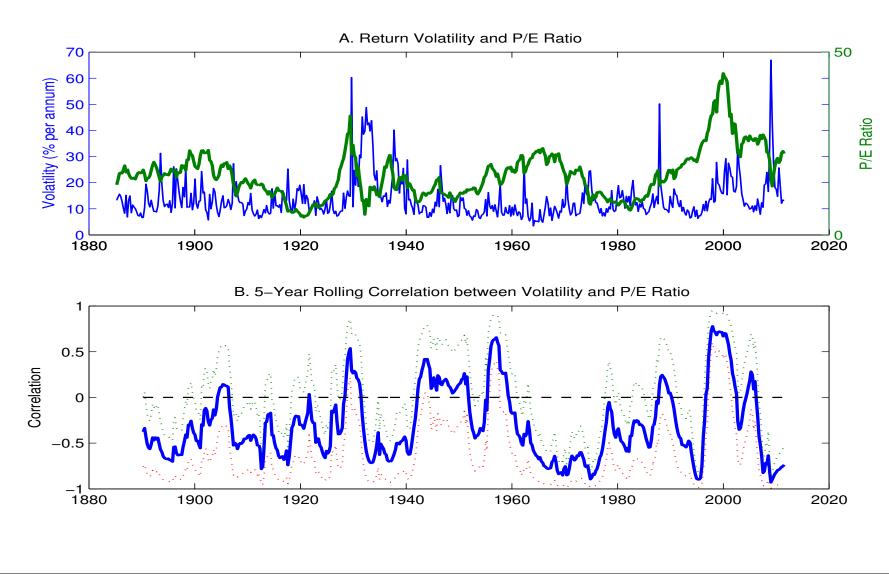
Volatility of
$$\frac{dP_t}{P_t}$$
 = Volatility of $\frac{dD_t}{D_t}$

- Something else must be time varying to make the volatility higher.
- Indeed, the canonical model would imply a constant P/D ratio, which we know it is not.

- 3. Volatility Puzzle 2: Return volatility is not only high, but it is time varying.
 - Historically, (annualized) market return volatility fluctuated wildly, ranging between 60 70 % in the 30s (and 2008-2009) to less that 5% in the middle of the 1960s.



4. Volatility Puzzle 3: Volatility and price/earning ratios are sometimes positively correlated.



5. Risk Free Rate Puzzle: The usual canonical model implies that the interest rate is given by

$$r = \phi + \gamma \mu_c - \frac{1}{2}\gamma(\gamma + 1)\sigma_c^2$$

- If $\gamma = 10$ for instance, using $\mu_c = 2\%$, $\sigma_c = 1\%$ and $\phi = 2\%$ we find r = 21%
- The problem is γ that is too high: If we set $\gamma = 2$ we obtain r = 6%.
- Note the tension between equity premium puzzle (need γ high) and risk free rate puzzle (need γ low).

- 6. Predictability: Stock returns are predictable by, say, the dividend price ratio, earnings price ratio, etc.
 - Predictability regression

```
Cumulated Returns (t \rightarrow t + \tau) = \alpha + \beta x_t + \epsilon_{t,t+\tau}
```

where x_t is a predictor observable at time t.

Table 1: Return Predictability – CRSP Sample: 1927 - 2010						
Predictor	Horizon (Quarters)	α	β	$t(\alpha)$	t(eta)	R^2
Log Div Yield	1	0.10	0.02	1.72	1.53	1.1%
Log Earn Yield (1 y)	1	0.09	0.03	2.32	1.99	1.1%
Log Earn Yield (10 y)	1	0.13	0.04	2.80	2.55	2.2%
Term Spread	1	0.01	0.46	0.74	1.05	0.3%
Return Variance	1	0.02	-0.15	2.47	-0.24	0.0%
Credit Spread	1	0.01	0.62	0.40	0.37	0.2%
Book / Market	1	-0.02	0.06	-1.27	2.03	2.4%
Log Payout yield	1	0.15	0.06	2.44	2.28	1.7%
Log Div Yield	4	0.42	0.11	2.56	2.29	5.2%
Log Earn Yield (1 y)	4	0.35	0.11	3.08	2.59	3.9%
Log Earn Yield (10 y)	4	0.52	0.17	3.57	3.09	9.2%
Term Spread	4	0.02	2.12	0.65	1.94	1.6%
Return Variance	4	0.05	0.04	2.51	0.03	0.0%
Credit Spread	4	0.03	1.78	0.87	0.54	0.4%
Book / Market	4	-0.09	0.23	-1.46	2.93	8.0%
Log Payout yield	4	0.73	0.32	3.89	3.47	10.2%
Log Div Yield	12	1.12	0.29	4.37	3.75	14.2%
Log Earn Yield (1 y)	12	1.00	0.32	3.20	2.71	11.6%
Log Earn Yield (10 y)	12	1.31	0.42	3.25	2.78	22.1%
Term Spread	12	0.02	8.53	0.18	2.16	9.3%
Return Variance	12	0.15	-0.37	2.43	-0.09	0.0%
Credit Spread	12	0.11	4.13	1.00	0.73	0.7%
Book / Market	12	-0.17	0.53	-1.01	2.33	15.7%
Log Payout yield 12 1.76 0.75 3.21 2.77						
Note: t-statistics computed using Newey West standard errors						

Table 2: Return Predictability – "cay" Sample: 1952 - 2010						010
Predictor	Horizon (Quarters)	α	β	$t(\alpha)$	t(eta)	R^2
Log Div Yield	1	0.10	0.02	2.02	1.75	1.5%
Log Earn Yield (10 y)	1	0.07	0.02	1.64	1.34	0.9%
сау	1	0.01	0.87	2.42	3.88	4.3%
Term Spread	1	0.00	0.66	0.34	1.61	1.3%
Book / Market	1	0.00	0.02	0.16	0.86	0.4%
Investment/Capital	1	0.15	-3.88	2.98	-2.69	3.0%
Log Payout yield	1	0.09	0.04	1.57	1.36	0.9%
Log Div Yield	4	0.43	0.11	2.33	1.99	6.6%
Log Earn Yield (10 y)	4	0.30	0.09	2.05	1.65	4.2%
сау	4	0.05	3.61	2.92	3.97	16.6%
Term Spread	4	0.02	2.29	0.58	2.21	3.6%
Book / Market	4	0.00	0.10	-0.03	1.15	2.1%
Investment/Capital	4	0.47	-11.78	2.57	-2.19	6.1%
Log Payout yield	4	0.47	0.19	2.41	2.10	5.5%
Log Div Yield	12	1.06	0.26	3.30	2.94	16.1%
Log Earn Yield (10 y)	12	0.73	0.20	2.32	1.91	9.9%
сау	12	0.14	8.59	4.12	6.70	38.1%
Term Spread	12	0.07	4.99	1.30	3.28	6.6%
Book / Market	12	0.07	0.15	0.57	0.78	1.9%
Investment/Capital	ent/Capital 12		-31.38	4.29	-3.80	16.7%
Log Payout yield	12	1.12	0.44	3.63	3.15	12.0%
Note: t-statistics computed using Newey West standard errors						

page: 12

Implications of Benchmark Model

- This result raises a number of issues, such as:
- (a) Why are stock return predictable?
- (b) Why the regression coefficients (and significance) depend on the time interval used?
- (c) What are the implication for an investor who is allocating his wealth between stocks and bonds to maximize his life time utility?
- (d) Why stock return volatility does not predict future excess returns? After all, the canonical model has

Expected Excess Return = γ Variance of Stock Return

• Using more sophisticated models for volatility, some studies find a significantly positive relation, but some others find a significant negative relation. There is still a considerable debate.

- 7. Cross-sectional Predictability Puzzle: Some type of stocks yield an average return that is not consistent with the canonical model.
 - The canonical model implies that expected excess returns of asset i is given by:

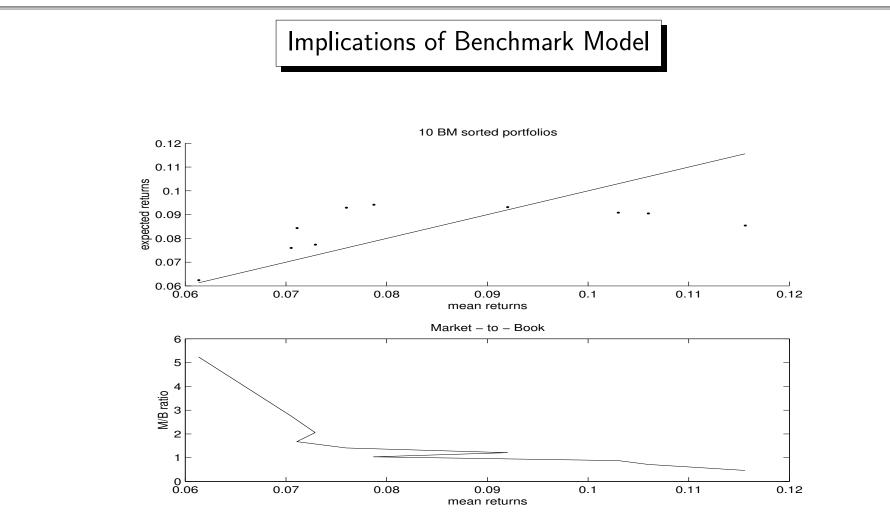
$$E\left[\operatorname{Excess}\operatorname{Return}_{t}^{i}\right] = \gamma \operatorname{Cov}\left(\operatorname{Return}^{i}, \operatorname{Consumption}\operatorname{Growth}\right)$$

 $= \beta^i E$ [Excess Return of Mkt Portfolio]

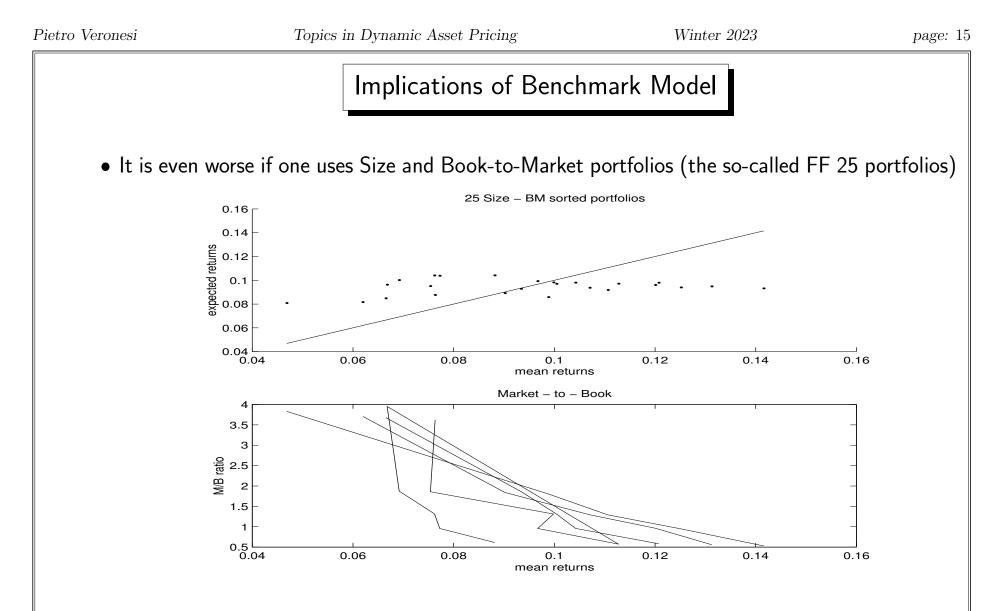
• where

$$\beta^{i} = \frac{\text{Cov} \left(\text{Return}^{i}, \text{Return Mkt Portfolio}\right)}{\text{Var} (\text{Return Mkt Portfolio})}$$

- Portfolios of stocks that are sorted by Book-to-Market Ratio or by Size and Book to Market do not satisfy this relation.
- For instance, using Book-to-Market sorted portfolios, we obtain the following

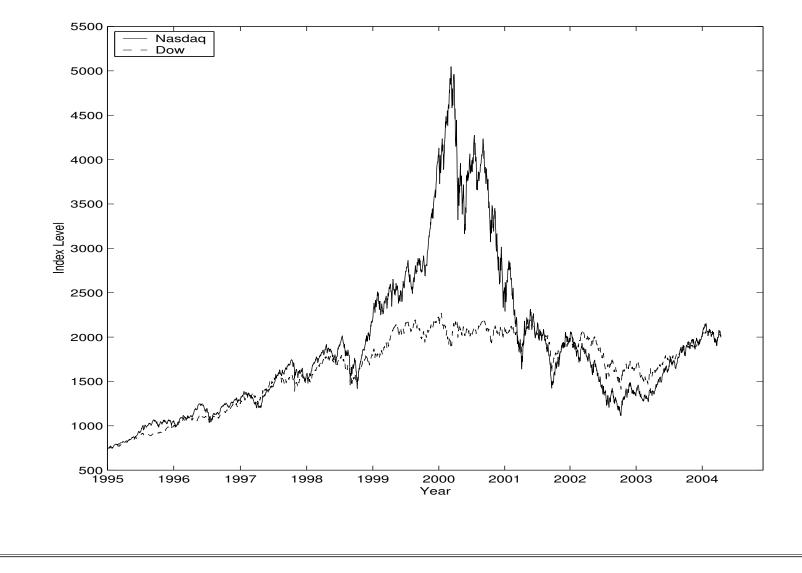


- The top panel shows the the average return on B/M sorted portfolio on the x-axis, and the one implied by the CAPM (= beta \times Average Return of Market Portfolio) on the y-axis
- They should line up, but they don't



• Adding to this, momentum portfolios (sorted by past winners and losers) show similar and perhaps more striking pattern.

8. Tech "Bubble": Typical to talk about technology bubbles (e.g. late 1990s)



Winter 2023

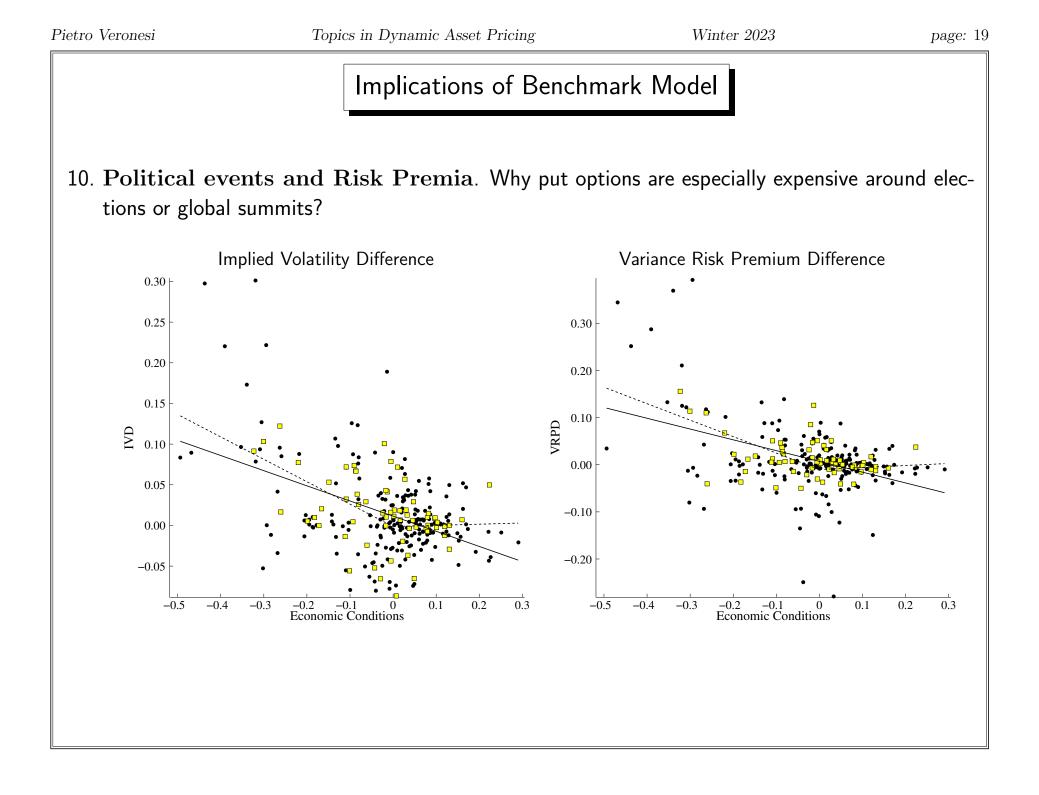
Implications of Benchmark Model

- Was it a bubble?
- Why do stock prices tend to go up and then down around technological revolutions?
- Examples:
 - the early 1980s (biotechnology, PC)
 - the early 1960s (electronics)
 - the 1920s (electricity, automobiles)
 - the early 1900s (radio)

9. Presidential Cycle. Why are average excess returns higher during democratic presidencies?

	Sample: 1927 - 2009		
	Rep	Dem	t-diff
Average Excess Returns (%/year)	0.79	10.37	2.30
Average Real Div Growth (%/year)	4.17	5.93	1.29
Average P/D Ratio	32.00	28.95	1.4 (logs)
Average Volatility (%/year)	15.48	14.39	1.67
Median Excess Return (%/year)	7.75	16.11	-
Median Nominal Dividend Growth (%/year)	7.00	7.92	-
Median P/D Ratio	26.83	23.62	-
Median Volatility (%/year)	12.08	11.66	-

See also: Santa Clara and Valkanov "Political Cycles and the Stock Market" Journal of Finance, 2003



Benchmark Portfolio Allocation Model

- Consider now the model above for stock returns with same preferences, but now we do not impose market clearing ($\theta = 1$).
- \bullet In this case, the utility maximization problem of an investor with investment horizon T is

$$J(W_0, 0) = \max_{\{(C_t), (\theta_t)\}} E_0 \left[\int_0^T e^{-\phi t} \frac{C_t^{1-\gamma}}{1-\gamma} dt \right]$$

• subject to the budget constraint

$$dW_t = \{W_t \left(\theta_t(\mu - r) + r\right) - C_t\} dt + W_t \theta_t \sigma d\mathbf{B}_t$$

• The solution to this program yields an investment in stocks equal to

 $\label{eq:Fraction} \mbox{ Fraction of Wealth Invested in Stocks} = \theta_t = \frac{\mbox{Excess Return on the Stock Market}}{\gamma \mbox{Variance of Stock Returns}}$

Implications of Benchmark Portfolio Allocation Model

- 1. Portfolio Allocation Puzzle 1: The typical stockholders holds too little in stocks compared to what a canonical model would require.
 - \bullet Using unconditional averages, Excess Stock Return = 7% and Volatility of Returns = .16 %, we obtain

Table: Portfolio Allocation

	Risk Aversion					
	2	4	6	8	10	
Investment	136%	68 %	45%	34 %	27 %	

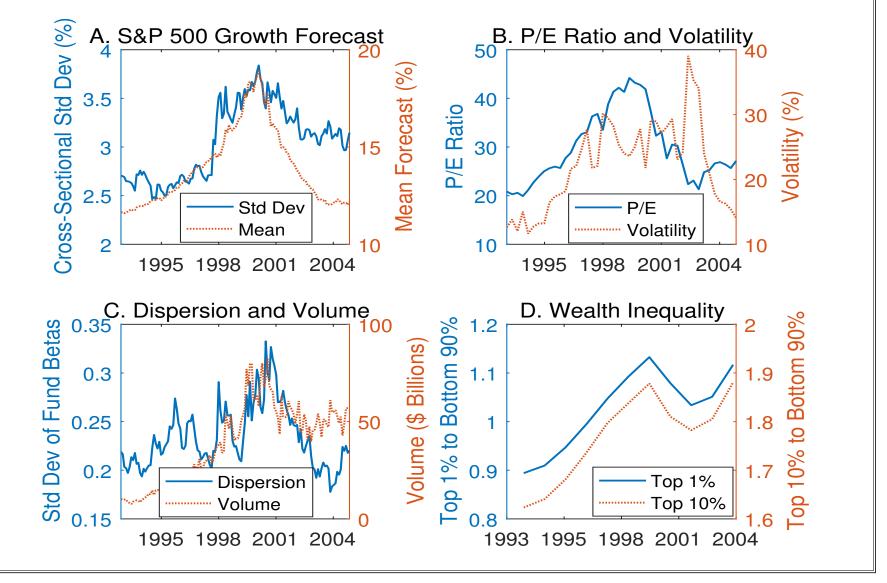
 In contrast, depending on estimates, typical household holds betwee 6 % to 20 % in equity. Conditional on participating to the stock market, these number increase to about 40% of financial assets.

Implications of Benchmark Portfolio Allocation Model

- 2. Portfolio Allocation Puzzle 2: The canonical model with constant investment opportunity set implies that the portfolio allocation should not depend on the age of investor.
 - This is in contrast with the behavior of investors: Investors increase their holdings in equity for the first 1/2 of their life cycle, and decrease it afterwards.
- 3. Portfolio Allocation Puzzle 3: Many investors do not participate in the stock market, while the canonical model would imply always some participation to the market (at worse, short the market).
- 4. Portfolio Allocation Puzzle 4: Many investors invest in own company stocks, especially in their retirement plan. Diversification arguments clearly points at "shorting" the stock, if anything.

Benchmark Model: No Trading and Wealth Inequality

• Representative agents models don't have implications about trading or cross-sectional differences in wealth inequality, which are important features of the data.



Benchmark Model: No Trading and Wealth Inequality

- What forces determine trading and wealth inequality dynamics?
 - Asymmetric information
 - Differences of beliefs
 - Heterogeneity in preferences
- Can we reconcile standard representative agent models with such trading dynamics?
 - Aggregation becomes difficult. But progress in recent times.

Nominal Long Term Bonds in Benchmark Model

- I now introduce an exogenous inflation process, and obtain nominal long term bond prices.
- The log dividend (consumption) c = log(C) and log CPI $q_t = \log Q_t$ grow according to the joint stochastic model

$$dc_t = gdt + \sigma_c dW_{c,t}$$

$$dq_t = i_t dt + \sigma_q dW_{q,t}$$

$$di_t = (\alpha - \beta i_t) dt + \sigma_i dW_{i,t}$$

 $-i_t =$ is the expected inflation rate $i_t = E_t[dq_t]/dt$.

• The First Order Condition is (recall $\lambda_t = e^{-\phi t} C_t^{-\gamma}$)

$$Z\left(i_{t}, t; T\right) = E\left[\frac{\lambda_{T}}{\lambda_{t}}\frac{Q_{t}}{Q_{T}}\right]$$

• yielding

$$Z(i_t, t; T) = e^{A_0(\tau) - A_\beta(\tau)i_t}$$

• where $A_{eta}(au)$ and $A_0(au)$ are two function of time to maturity au=T-t

1. The instantaneous nominal rate r_t is given by the constant real rate + inflation risk premium + expected inflation

$$r_{t} = \lim_{T \to 0} y(t;T) = -\lim_{\tau \to 0} \frac{A_{0}(\tau) - A_{1}(\tau)i_{t}}{\tau} = c + i_{t}$$

• where

$$c = \left(\rho + \gamma g - \frac{1}{2}\gamma^2 \sigma_c^2\right) - \gamma \sigma_c \sigma_q \rho_{qc} - \frac{1}{2}\sigma_q^2$$

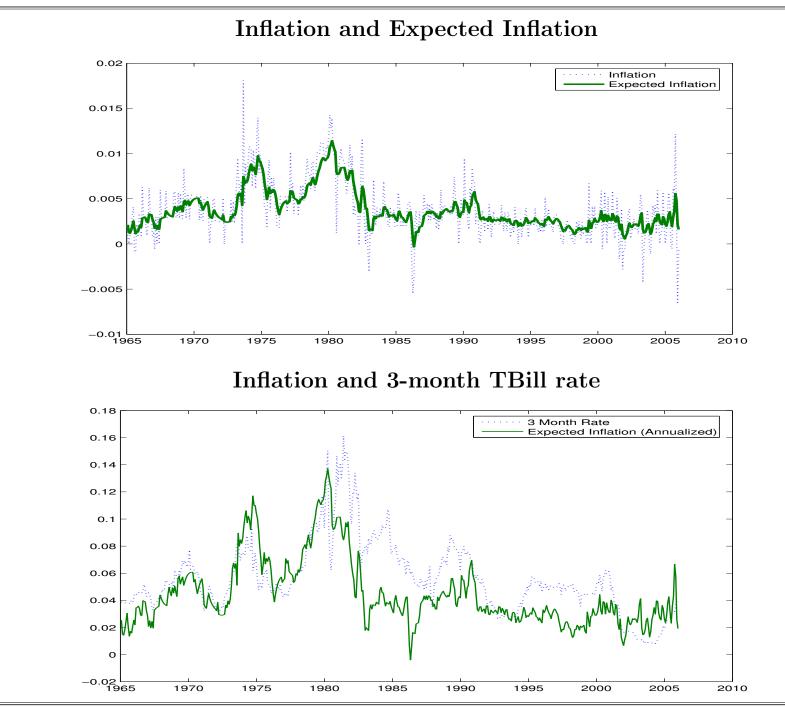
2. The whole yield curve depends on the current expected inflation $i_t = E \left[dq_t \right] / dt$.

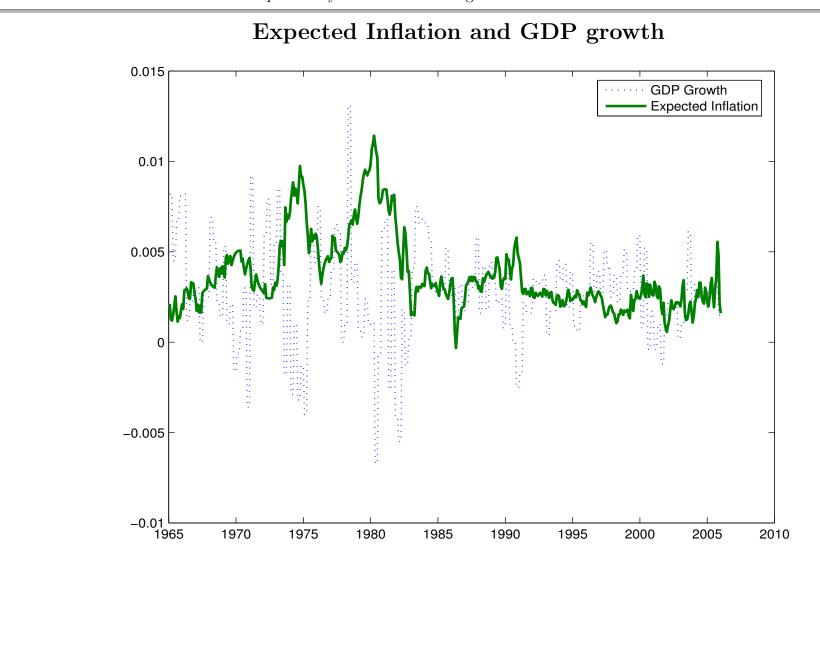
$$y\left(t;T\right) = -\frac{\log\left(Z\left(i_{t},t;T\right)\right)}{\tau} = -\frac{A_{0}\left(\tau\right)}{\tau} + \frac{A_{\beta}\left(\tau\right)}{\tau}i_{t}$$

- In particular, all of the yields are perfectly correlated.
- 3. The Term Spread (Slope) is

$$y_{\infty} - r_t = \left(\frac{\alpha}{\beta} - i_t\right) - \frac{1}{\beta} \left(\gamma \sigma_i \sigma_c \rho_{ic} + \sigma_i \sigma_q \rho_{iq}\right) - \frac{\sigma_i^2}{2\beta^2}$$

• Note that since $\rho_{ic} < 0$ (typically), $\gamma \sigma_i \sigma_c \rho_{ic} / \beta < 0$. Higher risk or risk aversion, the higher the long end of the yield curve.





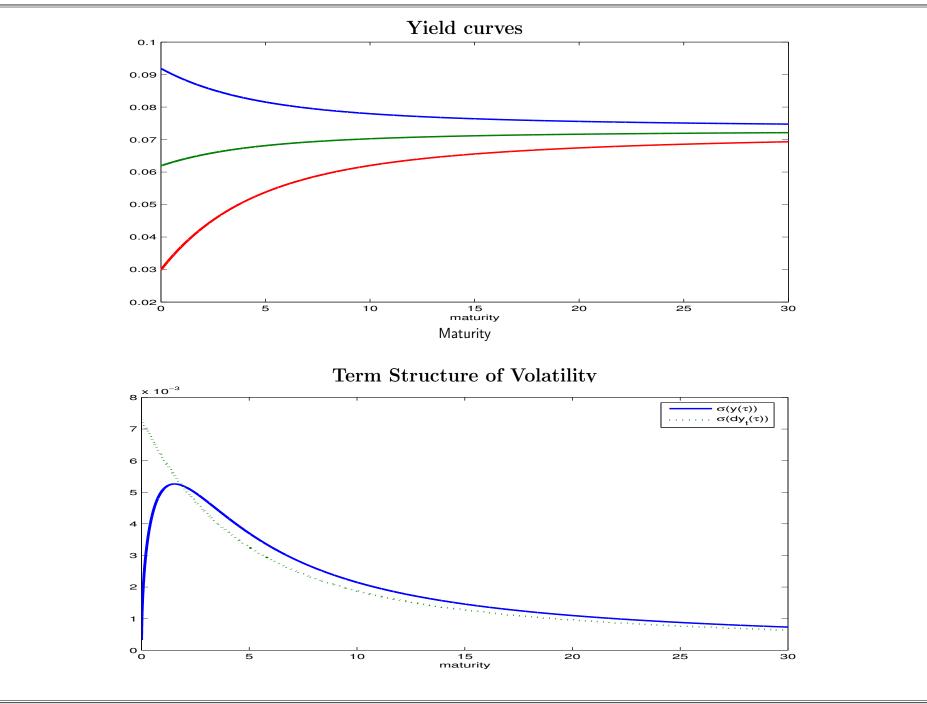
- 4. The model requires a large risk aversion to produce reasonable yield curves and a reasonable market price of risk λ
 - Using data on inflation and GDP growth (= C), we obtain the following parameters for the processes

* The estimates of GDP growth were g = .0321 and $\sigma_y = 0.0098$, which made it hard

to generate sensible yield functions. The parameters assumed are closer to consumption growth

- Using utility parameters $\rho = .1$ and $\gamma = 104$ we get a real rate c = .02. $\xi = -0.5931$
- Risk free rate puzzle kicks in:
 - For "reasonable" γ , the interest rate is too high.
 - Lowering γ to $\gamma \approx 0.5$ generates also reasonable yield curves, but they are not upward sloping in average. Moreover, the market price of risk is too low.

page: 30



5. The volatility of bond yields changes ($\sigma(dy)$) is constant over time but depends on maturity:

$$\sigma_y(t;T) = \frac{1 - e^{-\beta\tau}}{\beta\tau} \sigma_i$$

6. The bond risk premium is also constant, and given by

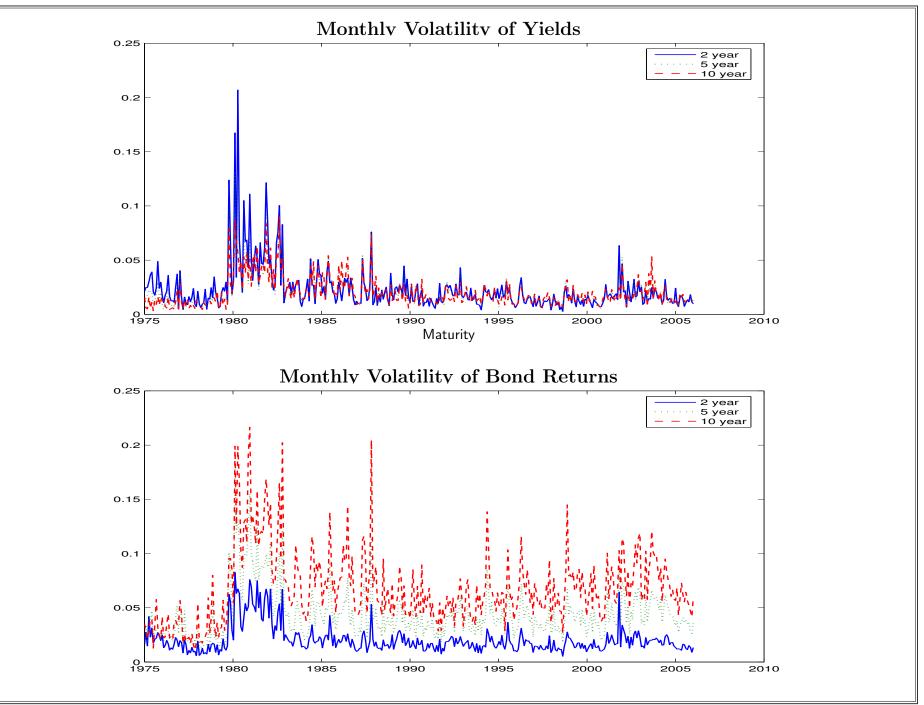
$$E\left[\frac{dZ}{Z}\right]/dt - r_t = \sigma_Z \xi$$

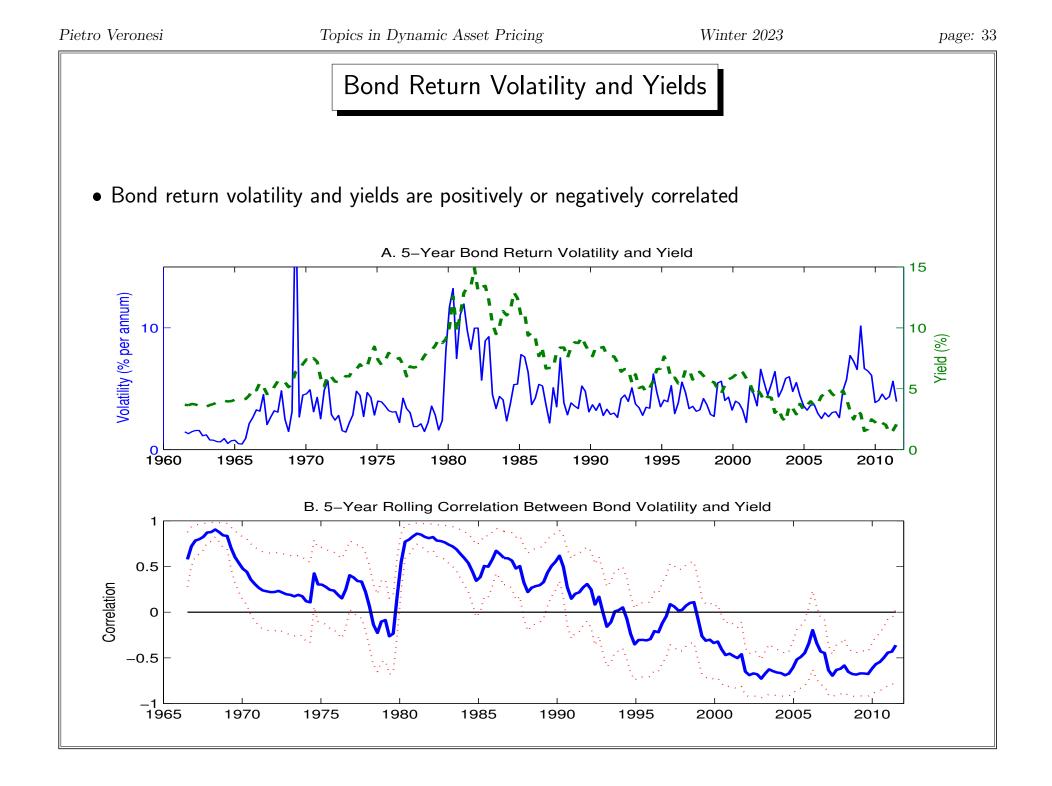
where

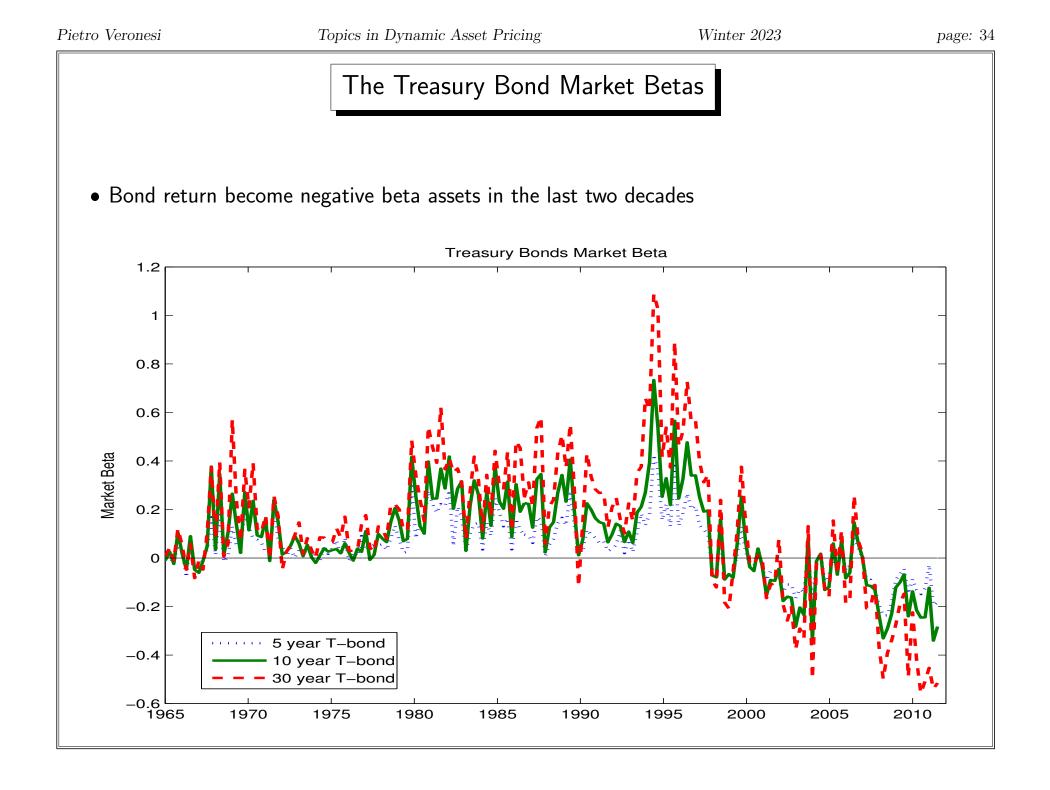
•
$$\sigma_Z = \operatorname{vol} \operatorname{of} dZ/Z = -A_\beta(\tau)\sigma_i$$

- $\xi = \gamma \sigma_c \rho_{ic} + \sigma_q \rho_{iq}$ is Market Price of (inflation) Risk
 - No time varying risk premium and no predictability

page: 32







Bond Predictability. Fama Bliss (1987)

• Fama and Bliss classic paper show that bond return are predictable by the forward spread.

holding period excess log return = $\alpha + \beta \left(f_t^{(n)} - y(t, 1) \right) + \epsilon_t$

• where n = horizon (in years)

Fama Bliss Regressions: 1960 - 2010

n	lpha	eta	t(lpha)	t(eta)	R^2
2	0.0018	0.7850	0.6020	2.8129	10.94%
3	-0.0002	1.2246	-0.0446	3.5671	17.50 %
4	-0.0031	1.5325	-0.4309	3.4255	17.19 %
5	0.0014	1.0862	0.1316	1.8760	6.97%

• However, evidence from Euro, UK, Japan is much less clearcut. What's different there?

Bond Predictability. Cochrane and Piazzesi (2003)

- Cochrane and Piazzesi (2003) show that there is a single combination of forwards that explain bond excess returns.
 - What is an economic model that generates that effect?
 - Intriguinly, Cochrane Piazzesi factor works also outside US, while Fama Bliss regressions do not. What is the factor capturing?

This Course Covers (subject to change, though)

- Foundations: Complete markets, state price densities, consumption/portfolio allocation, the martingale method.
- (Some) portfolio allocation models with
 - Time varying investment opportunities
 - Incomplete information (learning)
- Heterogeneous preferences, beliefs, and trading
 - Heterogenous risk aversion
 - Heterogeneous habits
 - Heterogeneous beliefs
- Incomplete information, learning and stock and bond returns
 - Valuation with uncertainty in long term growth.
- Politics and asset prices
 - Political news and returns
- Market incompleteness and constraints

Requirements

- Big Homework Assignments (30%):
 - I will assign three research ideas / projects during the terms.
 - Your assignments will be to develop such research ideas into coherent papers. This will involve
 (a) solving a model; (b) obtain predictions; (c) compare predictions with the data.
 - The paper must have the form of a paper, with an introduction, body of the paper, data analysis, conclusion, appendix.
 - The TA and I will be the referees: Give you feedback to improve writing.
 - You can work in groups, but with a limit of 3 per group.
- Weekly Mini Homework Assignments (10%):
 - Every class, I will write on the board some assignments related to missing steps in the notes.
 - You must turn in a sheet with the missing steps. This is individual work (no group).
- Midterm Exam (30%)
 - There will be a "midterm" in week 7. It will be online (open book). You can download the midterm any time between Monday, Feb 13 and Sunday, Feb 19, but you have only 1 1/2 hour to do it.
- Term Paper (25%)
 - A paper on the topics covered in class, due by the beginning on Spring quarter.
- Class participation (5%).