Dynamic Asset Pricing Models: Recent Developments Day 3. Habits, Long Run Risk and Cross-sectional Predictability

Pietro Veronesi

Graduate School of Business, University of Chicago CEPR, NBER

Bank of Italy: June 2006

Overview

- I. Santos and Veronesi (2006): Habit Preferences and the Cross-Section of Stock Returns
 - Discuss the empirical evidence on the value premium
- II. Bansal and Yaron (2005): Recursive Preferences and Long Run Risk
- III. Bansal, Dittmar and Lundbland (2005): Cash Flow risk and the Cross-Section of Stock Returns

Motivation

• The value premium:

Stocks with high book-to-market ratios, value stocks, have yielded higher average returns than stocks with low book-to-market ratios, growth stocks.

• The value premium puzzle: The CAPM fails to price value sorted portfolios.

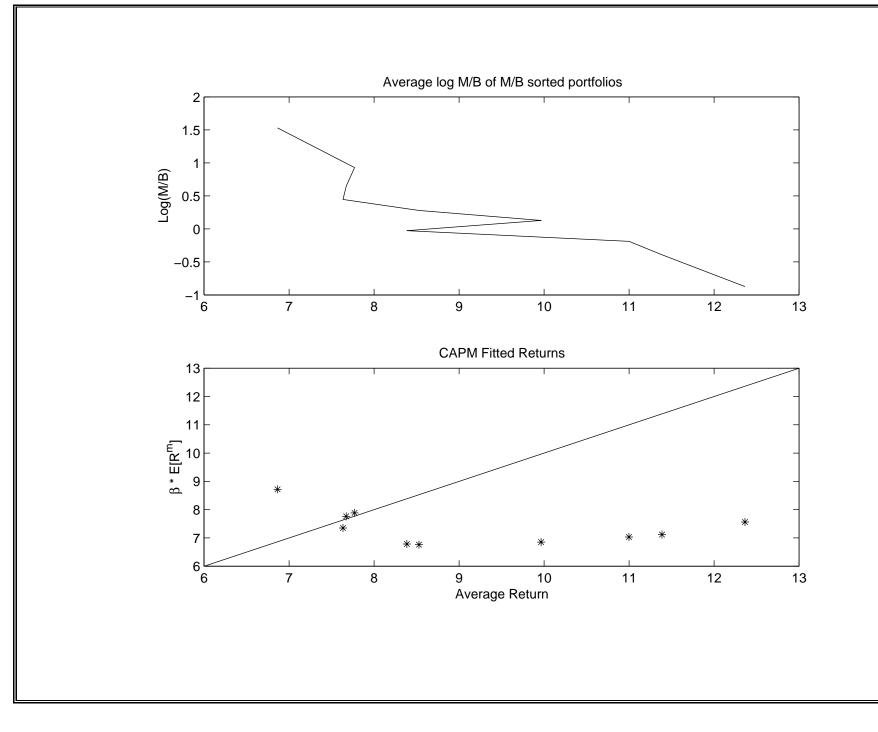


Table I (cont.) Basic moments										
	Panel C: The value premium									
	Growth									Value
Portf.	1	2	3	4	5	6	7	8	9	10
\overline{R}	6.86%	7.77%	7.67%	7.63%	8.53%	9.96%	8.39%	11.00%	11.39%	12.36%
$\overline{ME/BE}$	5.05	2.68	2.00	1.63	1.38	1.18	1.01	.86	.70	.45
$\overline{P/D}$	43.47	31.38	26.87	24.65	22.65	21.62	20.64	19.95	20.00	21.77
SR	.352	.450	.452	.461	.555	.640	.522	.657	.644	.600
CAPM β	1.13	1.02	1.01	.95	.88	.89	.88	.91	.92	.98

Notice:

I. The value premium

II. The value premium puzzle

III. The Sharpe ratio is decreasing in the ME/BE and P/D.

• Alternatives:

Rational

- * Multifactor models: Fama and French (1993)
- * Conditional CAPM: Lettau and Ludvigson (2001)
- * Cash flow risk: Campbell and Vuoltenaaho (2003), Bansal, Dittmar, and Lundblad (2005), Parker and Julliard (2005).
- * Long-run risks: Hansen, Heaton and Li (2005).
- * Composition effect: Santos and Veronesi (2005), Lettau and Wachter (2005).
- Behavioral
 - * Rosenberg, Reid and Lanstein (1985), DeBondt and Thaler (1987), Lakonishok, Shleifer, and Vishny (1994).

- These explanations are typically detached from the literature that focuses on the properties of the market portfolio:
 - The equity premium (puzzle), the volatility of returns, and the predictability of stock returns.
- In this paper we show that:
 - I. The time series behavior of the market portfolio imposes general equilibrium restrictions on the behavior of the cross-section of average returns of price sorted portfolios
 - II. These restrictions generate tight implications for the cash-flow characteristics of value and growth stocks.
 - III. Moreover, we show that these implications extend to the dynamics of the value premium.
 - IV. The model allow us to assess all these effects and implications quantitatively.

⁻ Standard in the equity premium literature, not so in the cross sectional one.

- Sketch of the model and strategy
 - The model has two ingredients
 - * Stochastic discount factor: Habit persistence a la Campbell and Cochrane (1999).
 - * A model of cash-flows a la Santos and Veronesi (2005) and Menzly, Santos, and Veronesi (2004).
 - The first ingredient is related to *discount effects*: How "risk averse" is the representative agent?
 - The second ingredient is related to individual *cash-flow effects*:
 - * Duration: High or low expected dividend growth and
 - * Cross sectional differences in cash-flow risk: Covariance of cash-flow growth with consumption growth.
 - We are going to calibrate the discount effects to get reasonable properties for the market portfolio and then see how much do we need in terms of cash-flow risk to generate reasonable properties for the cross section.

• Results:

- I. Value stocks are (endogenously) those with high cash-flow risk:
 - Empirical evidence: Cohen, Polk and Vuolteenaho (2003), Bansal, Dittmar, and Lundblad (2005), Hansen, Heaton and Li (2005).
- II. Value stocks are *particularly* risky in "bad times:" Time variation in risk attitudes interact with the cross sectional variation in cash-flow risk to generate fluctuations in the value premium.
 - Empirical evidence: The conditional asset pricing literature (Lettau and Ludvigson (2001)).
- III. Interpretation of asset pricing models in light of the present paper:

(A) CAPM: The value premium and puzzle obtain.

- (B) The Fama and French (1993) model performs well because
 - the loadings on HML capture cross sectional differences in cash-flow risk and
 - it captures the component of the value premium that is related to time series variation in the premium on HML.
- (C) Conditional CAPM models capture the time series variation of the value premium.
 - All these models capture different aspects of the cash-flow effects (and their interaction with discount effects).

IV. Magnitudes:

- In the absence of cash-flow risk only discount risk effects matter and in this case a "growth premium" obtains.
- Thus cash-flow risk is needed to generate the value premium.
- We want to assess the "amount" of cross-sectional variation in cash-flow risk needed to generate the value premium.
- We find that, *in the context of our model*, the amount of cash-flow risk needed to generate the value premium is "large."

The Model

• Preferences

- A representative agent with preferences

$$E\left[\int_0^\infty u\left(C_t, X_t, t\right) dt\right] \qquad \text{with} \qquad u\left(C_t, X_t, t\right) = \begin{cases} e^{-\rho t} \frac{\left(C_t - X_t\right)^{1-\gamma}}{1-\gamma} & \text{if } \gamma > 1\\ e^{-\rho t} \log\left(C_t - X_t\right) & \text{if } \gamma = 1 \end{cases}$$

 $- \mbox{ Habit is given by }$

$$X_t = \lambda \int_{-\infty}^t e^{-\lambda(t-\tau)} C_\tau d\tau \qquad \Rightarrow \qquad dX_t = \lambda \left(C_t - X_t \right) dt$$

Define

$$G_{t} = \left(\frac{C_{t}}{C_{t} - X_{t}}\right)^{\gamma} \qquad \Rightarrow \qquad dG_{t} = \left[\mu_{G}\left(G_{t}\right) - \sigma_{G}\left(G_{t}\right)\mu_{c,1}\left(\mathbf{s}_{t}\right)\right]dt - \sigma_{G}\left(G_{t}\right)\sigma_{c}dB_{t}^{1}$$

- We simply assume that

$$\mu_{G}(G_{t}) = k(\overline{G} - G_{t})$$
 and $\sigma_{G}(G_{t}) = \alpha(G_{t} - \lambda)$

Thus

$$\uparrow dB_t^1 \quad \Rightarrow \quad \downarrow dG_t \quad \Rightarrow \quad \uparrow S_t = \frac{C_t - X_t}{C_t}$$

• Endowment: Cash flows

- We make two assumptions:

* Assumption 1

$$\frac{dC_t}{C_t} = \mu_c \left(\mathbf{s}_t \right) dt + \boldsymbol{\sigma}'_c \ d\mathbf{B}_t$$

where

$$\mu_{c}\left(\mathbf{s}_{t}\right) = \overline{\mu}_{c} + \mathbf{s}_{t}' \ \boldsymbol{\theta}_{CF} \qquad \text{and} \qquad \boldsymbol{\sigma}_{c} = (\sigma_{c}, 0, ..., 0)'$$

* Assumption 2

$$ds_t^i = \phi\left(\overline{s}^i - s_t^i\right)dt + s_t^i \boldsymbol{\sigma}^i\left(\mathbf{s}_t\right) \cdot d\mathbf{B}_t \qquad \text{and} \qquad \boldsymbol{\sigma}^i\left(\mathbf{s}_t\right) = \boldsymbol{\nu}_i' - \sum_{j=1}^n s_t^j \boldsymbol{\nu}_j'$$

- \cdot Each asset represents a certain long run value of the overall economy, \overline{s}^i
- \cdot No firm will take over the economy.
- \cdot The choice of the volatility ensures that the shares are positive and add up to one.
- \cdot Dividends are then

$$D_t^i = s_t^i C_t$$

- <u>Dividends</u>: By Ito's Lemma:

$$\frac{dD_{t}^{i}}{D_{t}^{i}} = \mu_{D,t}^{i} dt + \boldsymbol{\sigma}_{D}^{i}\left(\mathbf{s}_{t}\right) d\mathbf{B}_{t}$$

where

$$\mu_{D,t}^{i} = \overline{\mu}_{c} + \theta_{CF}^{i} + \phi \left(\frac{\overline{s}^{i}}{s_{t}^{i}} - 1 \right)$$
 and $\boldsymbol{\sigma}_{D}^{i}(\mathbf{s}_{t}) = \boldsymbol{\sigma}_{c} + \boldsymbol{\sigma}^{i}(\mathbf{s}_{t})$

In these formulas,

$$heta_{CF}^i = oldsymbol{
u}_i^\prime \cdot oldsymbol{\sigma}_c$$

- <u>Cash-flow risk</u>: The covariance between dividend an consumption growth:

$$\sigma_{CF,t}^{i} \equiv Cov_{t} \left(\frac{dD_{t}^{i}}{D_{t}^{i}}, \frac{dC_{t}}{C_{t}} \right) = \boldsymbol{\sigma}_{c} \boldsymbol{\sigma}_{c}^{\prime} + \theta_{CF}^{i} - \mathbf{s}_{t}^{\prime} \boldsymbol{\theta}_{CF}$$

We can impose

$$\sum_{j=1}^{n} \overline{s}^{j} \theta_{CF}^{j} = 0 \qquad \Rightarrow \qquad \overline{\sigma}_{CF}^{i} = E\left[\sigma_{CF,t}^{i}\right] = \boldsymbol{\sigma}_{c} \boldsymbol{\sigma}_{c}^{\prime} + \theta_{CF}^{i}$$

Equilibrium Asset Prices and Returns

I. <u>Strategy</u>

• The stochastic discount factor

$$m_t = e^{-\rho t} \left(C_t - X_t \right)^{-\gamma} = e^{-\rho t} C_t^{-\gamma} G_t \qquad \Rightarrow \qquad \frac{dm_t}{m_t} = -r_t^f dt + \boldsymbol{\sigma}'_m d\mathbf{B}_t$$

• The first, and only non-zero entry of $oldsymbol{\sigma}'_m$

$$\sigma_{m,t}^1 = -\left[\gamma + \alpha \left(1 - \lambda S_t^\gamma\right)\right] \sigma_c.$$

• We have to solve for

$$m_t P_t^i = E_t \left[\int_t^\infty m_\tau s_\tau^i C_\tau d\tau \right]$$
 and $E_t \left[dR_t^i \right] = -cov \left(\frac{dm_t}{m_t}, dR^i \right) = -\boldsymbol{\sigma}'_m \boldsymbol{\sigma}_R^i$

II. <u>General Results</u>

(A) The total wealth portfolio

1. Prices

$$\frac{P_{t}^{TW}}{C_{t}} = \alpha_{0}^{TW}\left(\mathbf{s}_{t}\right) + \alpha_{1}^{TW}\left(\mathbf{s}_{t}\right)S_{t}^{\gamma} \qquad \text{where} \qquad S_{t} = \frac{C_{t} - X_{t}}{C_{t}}$$

Intuition:

For a given
$$\mathbf{s}_t \uparrow S_t \Rightarrow \downarrow \frac{\gamma}{S_t} \Rightarrow \uparrow \frac{P_t^{TW}}{C_t}$$

2. <u>Returns</u>

• The expected excess return on the total wealth portfolio

$$E_t \left[dR_t^{TW} \right] = \begin{cases} (\gamma + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \frac{S_t^{\gamma} \alpha \left(1 - \lambda S_t^{\gamma} \right)}{f_1^{TW} (\mathbf{s}_t) + S_t^{\gamma}} \sigma_c^2 & \text{Related to discount effects} \\ + & \\ (\gamma + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^{TW} \sigma_{CF,t}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right) \sum_{j=1}^n w_{jt}^j & \text{Related to changes in } E_t \left(dc_t + \alpha \left(1 - \lambda S_t^{\gamma} \right) \right)$$

(B) Individual securities

1. Prices

$$\frac{P_t^i}{D_t^i} = \alpha_0^i + \alpha_1^i S_t^\gamma + \alpha_2^i \left(\mathbf{s}_t\right) \left(\frac{\overline{s}^i}{s_t^i}\right) + \alpha_3^i \left(\mathbf{s}_t\right) S_t^\gamma \left(\frac{\overline{s}^i}{s_t^i}\right)$$

For a given distribution of shares \mathbf{s}_t

a. Expected dividend growth:

$$\uparrow \frac{\overline{s}^i}{s_t^i} \quad \Rightarrow \quad \uparrow E_t \left[\frac{dD_t^i}{D_t^i} \right] \quad \Rightarrow \quad \uparrow \frac{P_t^i}{D_t^i}$$

b. Aggregate discount effects:

$$\uparrow S_t \qquad \Rightarrow \qquad \downarrow \frac{\gamma}{S_t} \qquad \Rightarrow \qquad \uparrow \frac{P_t^i}{D_t^i}$$

c. A duration effect

An increase in S_t has a stronger impact on prices the higher the expected dividend growth.

2. <u>Returns</u>

• Expected excess returns

 $-\ensuremath{\mathsf{The}}\xspace$ excess returns

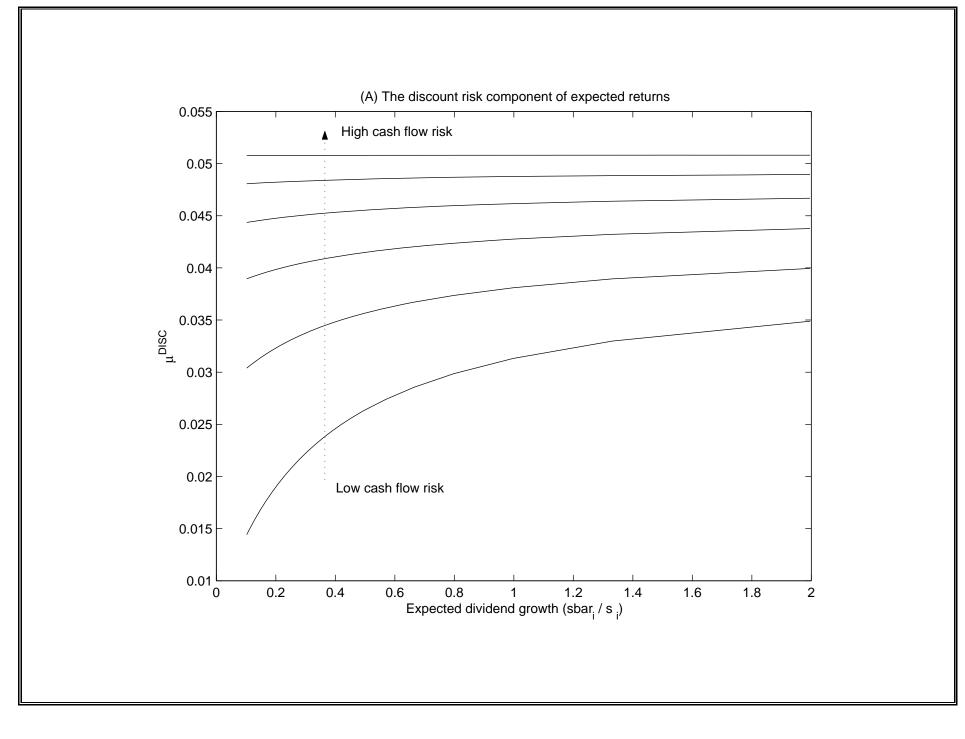
$$E_t \left[dR_t^i \right] = \mu_{i,t}^{DISC} + \mu_{i,t}^{CF}.$$

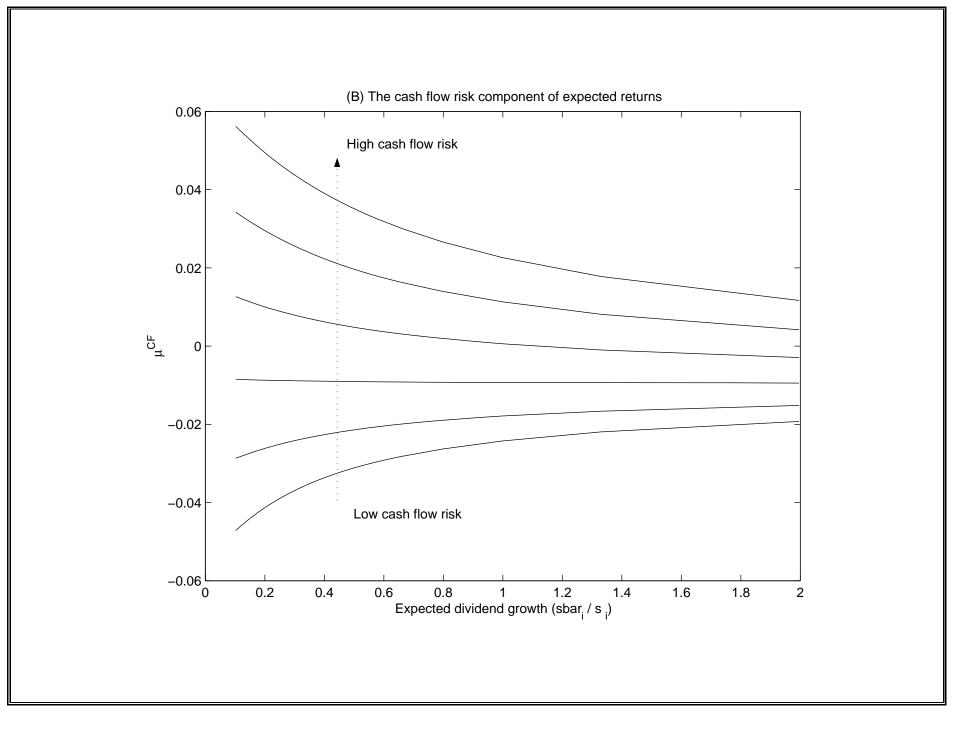
 \ast The discount component:

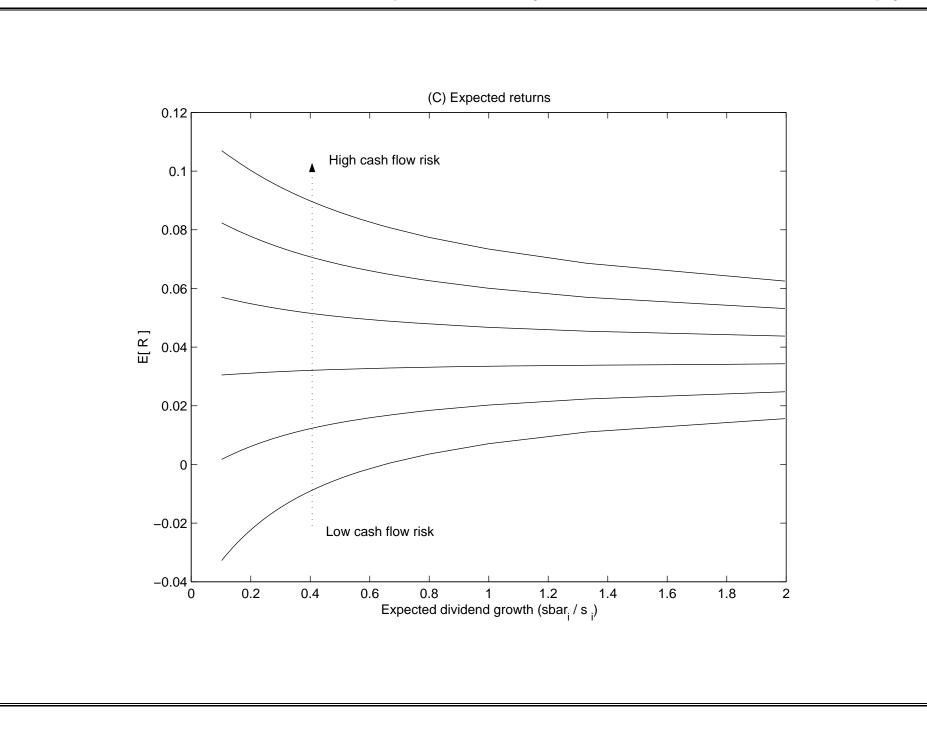
$$\mu_{i,t}^{DISC} = \left(\gamma + \alpha \left(1 - \lambda S_t^{\gamma}\right)\right) \left(\frac{\alpha S_t^{\gamma} \left(1 - \lambda S_t^{\gamma}\right)}{f_1^i \left(\frac{\overline{s}^i}{s_t^i}, \mathbf{s}_t\right) + S_t^{\gamma}}\right) \sigma_c^2$$

 \ast The cash-flow component:

$$\mu_{i,t}^{CF} = \left(\gamma + \alpha \left(1 - \lambda S_t^{\gamma}\right)\right) \left[\left(\frac{1}{1 + f_2^i \left(S_t, \mathbf{s}_t\right) \left(\frac{\overline{s}^i}{s_t^i}\right)} + \eta_{it}^i\right) \sigma_{CF,t}^i + \sum_{j \neq i} \eta_{jt}^i \sigma_{CF,t}^j \right]$$







• The source of the value premium

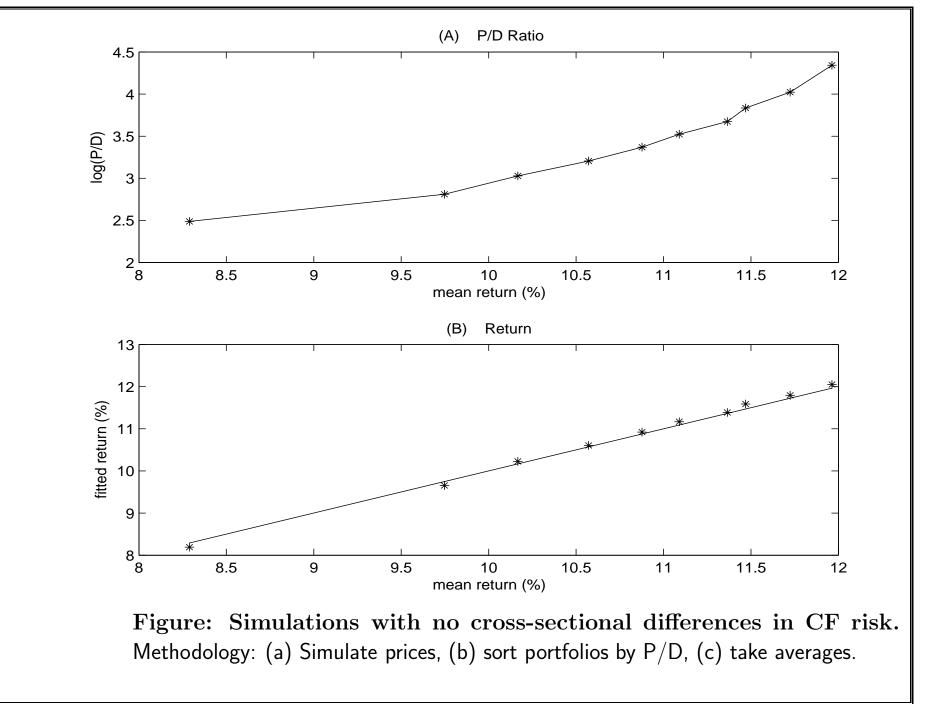
a. Discount effects only: A "growth premium" obtains:

 $-\theta_{CF}^{i} = 0$ for all *i*, and whatever cross-sectional differences are driven by $\overline{s}^{i}/s_{t}^{i}$.

$$\uparrow \frac{P_t^i}{D_t^i} \quad \Rightarrow \quad \uparrow \overline{s}^i / s_t^i \qquad \text{but} \qquad \uparrow \overline{s}^i / s_t^i \quad \Rightarrow \quad \uparrow E\left[dR_t^i\right]$$

- Thus

Growth premium: $\uparrow \frac{P_t^i}{D_t^i} \Rightarrow \uparrow E\left[dR_t^i\right]$



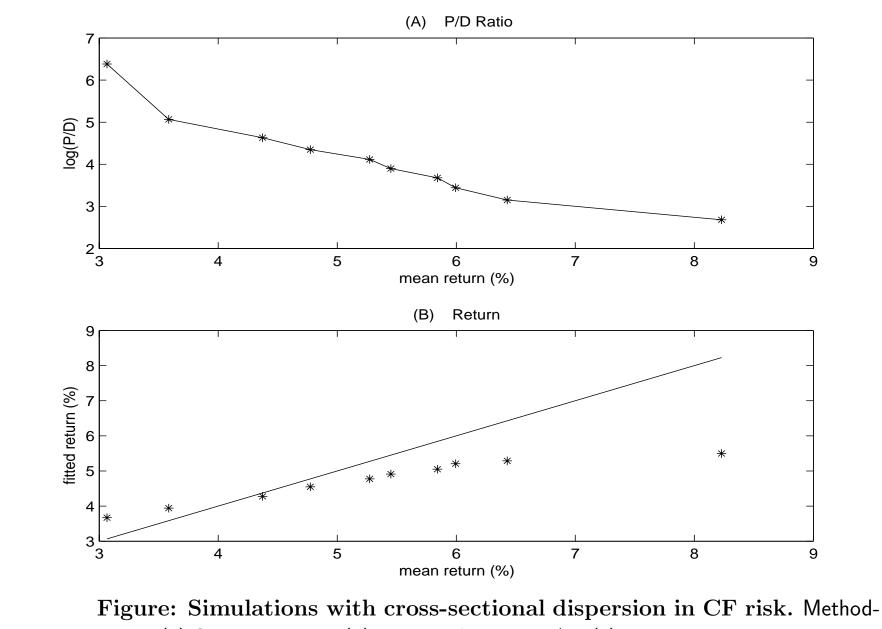
b. Discount effects + cash-flow effects: a "value premium" may obtain:

- Differences in $\theta^i{}_{CF}$ and \overline{s}^i/s^i_t drive cross-sectional differences.

$$\uparrow \frac{P_t^i}{D_t^i} \quad \Rightarrow \quad \begin{cases} \uparrow \overline{s}^i / s_t^i \Rightarrow & \uparrow \mu_{i,t}^{DISC} & \text{Discount risk effect} \\ \uparrow \overline{s}^i / s_t^i \Rightarrow & \downarrow \mu_{i,t}^{CF} & \text{Cash-flow risk effect - 1} \\ \downarrow \theta_{CF}^i \Rightarrow & \downarrow E_t \left[dR_t^i \right] & \text{Cash-flow risk effect - 2} \end{cases}$$

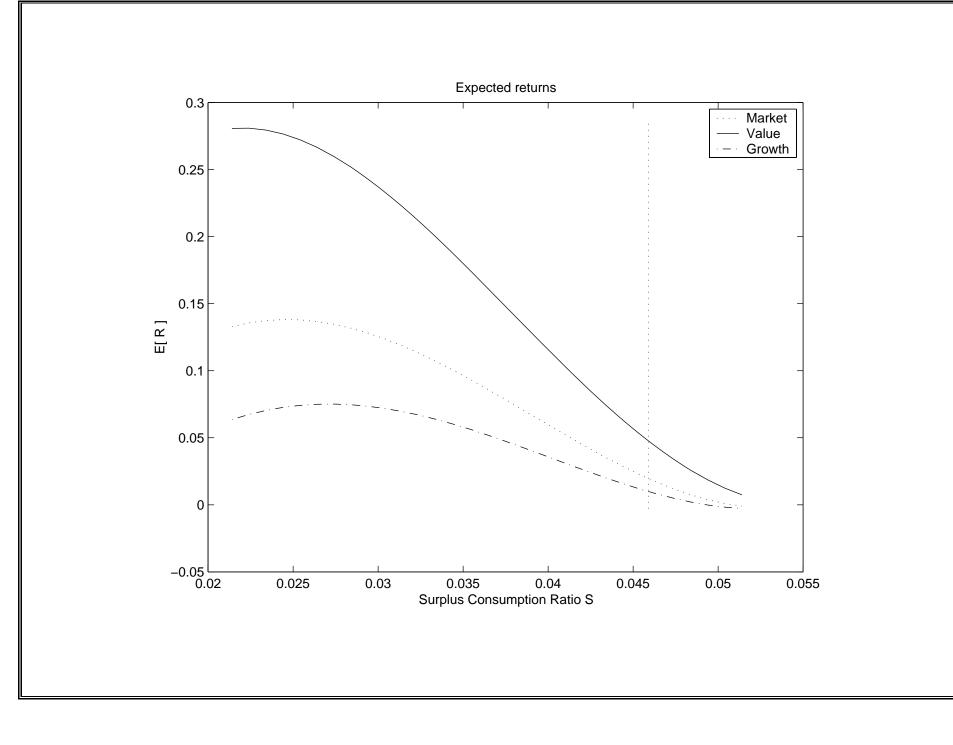
- Thus, if cash-flow risk effects are *sufficiently strong*

Value premium:
$$\uparrow \frac{P_t^i}{D_t^i} \Rightarrow \downarrow E\left[dR_t^i\right]$$



ology: (a) Simulate prices, (b) sort portfolios by P/D, (c) take averages.

- The dynamics of the value premium
 - There are two "effects" in our setup:
 - a. Cross-sectional differences in cash-flow risk, $heta^i_{CF}$ and
 - b. discount risk effects
 - These two effects interact to induce fluctuations in the value premium.
 - Intuition: Value stocks become relative riskier in bad times.
 - This is exactly what the conditional asset pricing models of, say, Lettau and Ludvigson (2001) capture.



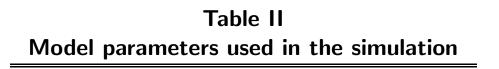
Simulations

l. <u>Data</u>

- CRSP-COMPUSTAT
- Sample period: 1948-2001
- We are after two sets of moments:
- (A) Time Series:
 - Equity premium and volatility of returns.
 - Predictability.
- (B) Cross section
 - The value premium.
- What is that we want to match?

II. <u>Details of the simulation</u>

- We simulate 10,000 years of quarterly data for 200 firms.
- We sort the 200 firms into 10 portfolios, sorted on P/D.
- Parameter choices are:



Panel A: Consumption and preference parameters

 $\mu_c \quad \sigma_c \quad \gamma \quad \rho \quad \gamma/\overline{S} \quad \min\{\gamma/S_t\} \quad \alpha \quad k$

.02 .015 1.5 .072 48 27.75 77 .13

Panel B: Share process parameter

 $n \quad \overline{ heta}_{CF} \quad \overline{s}^i \quad \phi \quad \overline{
u}$

 $200 \ .00345 \ .005 \ .07 \ 0.55$

III. Cash-flow effects, discount effects, and the value premium

• The model implies a steady state value of the local curvature of the utility function

$$-\frac{u_{CC}}{u_C}C = \frac{\gamma}{\overline{S}} = 48$$

• The model generates

- A slightly low equity premium: 4.40%
- A reasonable volatility of market returns: 13.6%
- Predictability that matches well the one in the 1948-2001 sample.

Table IIIBasic moments in simulated data

Panel A: Summary statistics for the aggregate portfolio

$E(\mathbb{R}^M)$	$\operatorname{vol}(R^M)$	r^{f}	$\operatorname{vol}(r^f)$
-------------------	---------------------------	---------	---------------------------

4.35% 13.03% .69% 4.36%

Panel B: Predictability regressions

Horizon	4	8	12	16
$\ln\left(\frac{D}{P}\right)$.25	.38	.43	.47
t—stat.	(29.11)	(34.68)	(37.58)	(39.46)
R^2 (%)	5.74	7.82	7.57	7.06

Table III (cont.) Basic moments in simulated data

Panel C: The value premium										
	Growth									Value
Portf.	1	2	3	4	5	6	7	8	9	10
\overline{R} (%)	3.07	3.58	4.37	4.77	5.27	5.45	5.84	6.00	6.43	8.23
$\overline{ln\left(P/D\right)}$	6.38	5.07	4.613	4.35	4.12	3.90	3.68	3.44	3.15	2.68
$Avge(heta^i_{CF}) imes 100$	2858	1589	0665	0083	.0295	.0568	.0787	.0958	.1128	.1431
Sharpe Ratio	.260	.271	.307	.313	.331	.328	.336	.330	.334	.366
CAPM β	.84	.91	.98	1.05	1.10	1.13	1.16	1.20	1.22	1.26
CAPM ret. (%)	3.67	3.94	4.28	4.55	4.78	4.91	5.05	5.21	5.29	5.50

- (A) The value premium
- (B) The value premium puzzle
- (C) The Sharpe ratio is decreasing in P/D.
- (D) Cash flows of value stocks is riskier

• What does our choice of θ_{CF}^i mean? Strong cash-flow effects, but more on this below.

IV. The dynamics of the value premium

• What are the value premium dynamics in the data?

- Split sample in periods of low aggregate M/B ($< \overline{c}$), and the complementary
- Compute average excess returns for M/B sorted portfolios.

Table IVThe dynamics of the value premium

Panel A: Annualized average excess returns (%) in empirical data	
--	--

Market-to-book of market portfolio $< \overline{c}$					Market-to-book of market portfolio $> \overline{c}$				
\overline{c}	1	10	10-1	\overline{R}^M	\overline{C}	1	10	10-1	\overline{R}^M
15%	13.18	23.57	10.38	15.40	15%	5.73	10.35	4.62	6.34
20%	10.57	21.70	11.14	13.41	20%	5.95	10.06	4.11	6.31
25%	5.51	19.16	13.64	9.89	25%	7.31	10.11	2.80	6.99
30%	6.97	19.49	12.51	10.50	30%	6.82	9.32	2.50	6.62
35%	8.19	18.65	10.45	11.14	35%	6.15	8.98	2.83	5.87

• What are the value premium dynamics implied by the model?

Table IV (cont.) The dynamics of the value premium

Panel B: Annualized average excess returns (%) in simulated data

Price-dividend of n	narket portfoli	$io < \overline{c}$ Price	Price-dividend of market portfolio $> \overline{c}$				
\overline{c} 1 10	10-1 \overline{R}	\overline{c}^M \overline{c}	1	10	10-1	\overline{R}^M	
15% 7.37 18.27	10.90 10	.43 15%	2.30	6.46	4.15	3.27	
20% 6.56 16.07	9.51 9.	22 20%	2.19	6.26	4.07	3.13	
25% 5.96 14.60	8.64 8.	36 25%	2.10	6.10	4.00	3.01	
30% 5.50 13.46	7.96 7.	67 30%	2.02	5.98	3.96	2.92	
35% 5.13 12.60	7.47 7.	18 35%	1.95	5.87	3.92	2.82	

V. The CAPM and other asset pricing models

(A) The CAPM

1. Time series evidence

				Tabl	e V Pane	el A				
			Time ser	ies regres	sion $R_t^i =$	$\alpha + \beta^M P$	$R_t^M + \epsilon_t$			
				Panel A-2	2: Empirie	cal data				
	Growth				Г					Value
Portf.	1	2	3	4	5	6	7	8	9	10
α	46	03	02	.07	.44	.78	.40	.99	1.07	1.20
$t(\alpha)$	(-2.00)	(18)	(14)	(.32)	(2.07)	(3.73)	(1.51)	(3.73)	(3.32)	(2.65)
eta^M	1.13	1.02	1.01	.95	.88	.89	.88	.91	.92	.98
$t\left(\beta^{M}\right)$	(39.80)	(43.68)	(42.56)	(30.32)	(27.24)	(27.27)	(21.38)	(21.33)	(17.56)	(14.16)
				Panel A-2	2: Simulat	ed data				
	Growth									Value
Portf.	1	2	3	4	5	6	7	8	9	10
α	15	09	.02	.06	.12	.13	.20	.20	.29	.68
$t(\alpha)$	(-14.25)	(-5.95)	(1.52)	(3.27)	(6.99)	(6.87)	(9.12)	(8.35)	(10.32)	(17.56)
eta^M	.84	.91	.98	1.05	1.10	1.13	1.16	1.20	1.22	1.26

2. Fama-MacBeth regressions

Table VICAPM: Fama-MacBeth regressions (quarterly)

Panel A: Empirical data

Const. Mkt. Adj. R^2 1. 4.69 -2.52 11% (3.21) (-1.65)

Panel B: Simulated data

	Const.	Mkt.	Adj. R^2
5.	-1.45	2.56	91%
	(-19.93)	(32.45)	

page: 36

A Pitfall

• Judging by t-stat and R^2 , CAPM works well.

- This is because the betas in the first pass regression indeed line up with average returns.

$$r_t^i = \alpha^i + \beta^i r_t^M + \epsilon_t^i$$

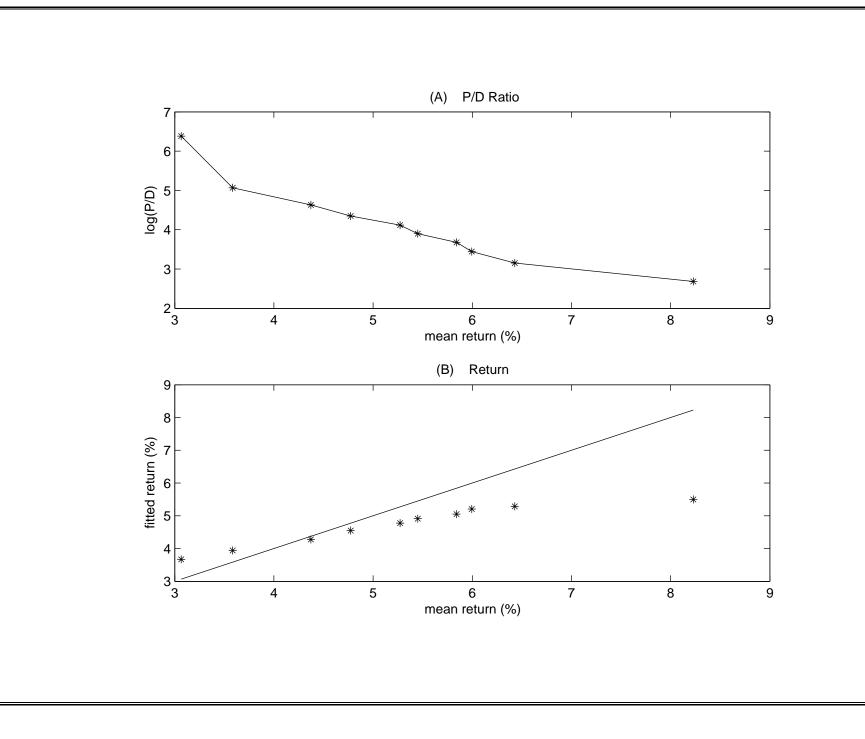
 $- \Longrightarrow$ In the second pass (cross-sectional) regression, R^2 and t-stat are high.

$$\lambda^i = \lambda_0 + \beta^i \lambda^M + \eta^i$$

- But magnitude of coefficient is off:

Implied premium $= 2.56 \times 4 = 10.4\% > 4.35\% (= E[dR^M])$

- Pitfall: Finding a significant t-stat and high R^2 is missleading.
- Economic magnitudes of coefficients in Fama-Macbeth regressions are index of whether asset pricing model works or not.
- Tests of the magnitudes are harder, especially for conditional asset pricing models (below)
- Santos and Veronesi (2006) use simulations to gauge the magnitudes of coefficients,



(B) The Fama and French (1993) Model

1. Time series evidence

Table V Panel B

Time series regression	$R_t^i = \alpha + \beta^M R_t^M + \beta^{HML} R_t^{HML} + \epsilon_t$
------------------------	---

				Panel B-1	: Empirica	al data				
	Growth									Value
Portf.	1	2	3	4	5	6	7	8	9	10
α	.20	.17	.02	12	.19	.28	40	.01	08	36
$t(\alpha)$	(1.13)	(1.05)	(.14)	(61)	(.87)	(1.58)	(-2.15)	(.09)	(43)	(-1.23)
β^M	1.04	.99	1.00	.98	.91	.96	.99	1.05	1.09	1.20
$t\left(\beta^{M}\right)$	(43.68)	(51.25)	(46.13)	(35.28)	(30.25)	(38.66)	(39.90)	(48.04)	(39.61)	(29.85)
β^{HML}	42	12	03	.12	.16	.31	.50	.61	.72	.97
$t\left(\beta^{HML}\right)$	(-12.13)	(-2.37)	(68)	(1.88)	(3.62)	(8.85)	(10.35)	(15.52)	(21.04)	(14.14)

				Panel B-2:	Simulate	ed data					
	Growth									Value	
Portf.	1	2	3	4	5	6	7	8	9	10	
α	01	.02	.07	.06	.09	.10	.11	.03	.07	.13	
$t(\alpha)$	(-1.15)	(1.24)	(4.50)	(3.44)	(5.26)	(4.85)	(5.38)	(1.57)	(2.97)	(5.38)	
eta^M	.93	.97	1.01	1.05	1.08	1.11	1.11	1.10	1.09	.93	
β^{HML}	28	21	09	01	.06	.08	.16	.31	.41	1.07	

2. Fama-MacBeth regressions

Table VI Fama and French (1993): Fama-MacBeth regressions (quarterly) Panel A: Empirical data Const. Mkt. SMB HML Adj. R^2 .36 1.63 -.31 80% 2. 1.05 (.23) (.99) (-.31) (2.16)Panel B: Simulated data Adj. R^2 Const. Mkt. HML 99% -.171.31 .94 6. (-1.64)(11.85)(28.69)

(C) Conditional CAPM

1. Fama-MacBeth regressions

Table VConditional CAPM: Fama-MacBeth regressions (quarterly)

Panel A: Empirical data

	Const.	Mkt	$Mkt \times log(D/P)$	$Mkt \times cay$	Adj. R^2
3.	2.72	87	1.71		83%
	(2.24)	(65)	(2.46)		
4.	3.06	- 1. 37		.06	81%
	(2.48)	(-1.01)		(2.34)	

Panel B: Simulated data

	Const.	Mkt.	$Mkt \times log(D/P)$	Adj. R^2
7.	.63	.38	1.16	98%
	(3.56)	(2.00)	10.11	

page: 41

VI. <u>Discussion: The size of the cash-flow risk effect</u>

(A) Do value stocks have larger cash-flow risk?

• A key *implication* of our model is that value stocks are those with higher cash-flow risk: Is there evidence to support this implication?

Yes. For instance:

- Cohen, Polk, and Vuolteenaho (2003), Parker and Julliard (2005), and Hansen, Heaton, and Li (2005) Campbell and Vuolteenaho (2005).
- Example CPV (2003):

Table VII: Cash-flow betas

Cash-flow def.	Growth 1	2	3	4	5	6	7	8	9	Value 10
$\frac{X_{t+4,j+4}^{p} - X_{t-1,0}^{p}}{ME_{t-1,0}^{p}}$ std. err.	.21 (.19)			1.61 (.28)			2.74 (1.24)			2.64 (1.65)
$\Sigma_{j=0}^4 ho^j \Delta d_{t+j,j+1}^p$ std. err.	.79 (.19)	.90 (.13)	.96 (.10)		1.34 (.28)		1.14 (.31)		1.39 (.77)	1.28 (.91)

(B) Sensitive analysis: Asset Pricing

• How sensitive are the results to the particular choice of θ_{CF}^i and $\overline{\nu}$?

1. Let's compute the basic return moments for several values of $\overline{\theta}_{CF}$:

$$\theta_{CF}^{i} \in \left[-\overline{\theta}_{CF}, \overline{\theta}_{CF}\right] \qquad \overline{\theta}_{CF} \left(\times 100\right) \in \left\{0, .1, .2, .3, .345\right\} \qquad \text{with} \qquad \overline{\nu} = .55$$

Cash-flow risk	Market portfolio					Predictability				e premium
$\overline{ heta}_{CF} imes$ 100	\overline{R}^M	${\rm vol}(R^M)$	\overline{r}^{f}	$volig(r^fig)$	b_{12}	R_{12}^2	b_{16}	R_{16}^{2}	10 - 1	CAPM 10-1
.0	9.90	24.16	1.16	5.44	.76	23.1	.78	22.4	-3.67	-3.86
.1	9.70	23.66	1.13	5.34	.74	21.9	.76	21.2	-3.27	-3.48
.2	8.99	21.95	1.01	5.05	.70	18.2	.72	17.3	-1.49	-1.70
.3	7.15	17.85	.81	4.60	.58	10.1	.59	9.0	2.83	2.19
.345	4.35	13.03	.69	4.36	.43	7.6	.47	7.1	5.16	1.83

Table VII: Sensitivity with respect to $\overline{\theta}_{CF}$

- Why the equity premium, the volatility of returns and the predictability go down as we increase $\overline{\theta}_{CF}$?

* Intertemporal consumption smoothing effect.

* In our setup dc_t and $E_t [dc_t]$ are positively correlated.

 \ast In habit persistence models ...

$$\downarrow dc_t \quad \Rightarrow \quad \downarrow S_t \quad \Rightarrow \quad \uparrow \frac{\gamma}{S_t} \quad \Rightarrow \quad \downarrow \frac{P_t}{C_t}$$

 $* \dots but now$

$$\downarrow dc_t \quad \Rightarrow \quad \downarrow E_t \left[dc_t \right] \quad \Rightarrow \quad \uparrow \frac{P_t}{C_t},$$

because the agent wants to smooth consumption intertemporally and desires to "transfer" consumption to the future, increasing prices in the process.

* This reduces the drop in prices \implies the volatility decreases, etc.

* This effect is stronger the larger the cash-flow risk effects:

$$\mu_{c,1}\left(\mathbf{s}_{t}\right) = \mathbf{s}_{t}^{\prime}\theta_{CF}$$

page: 45

2. Let's compute the basic moments for several values of $\overline{\nu}$. Let

 $\nu \in \{.25, .40, .55\}$ with $\overline{\theta}_{CF} = .00345$

- Recall that this parameter controls the volatility of the shares.

Table VII: Sensitivity with respect to $\overline{\nu}$

		Market p	ortfo	lio	Predictability	Valu	e premium
$\overline{\mathcal{V}}$	\overline{R}^M	$vol(R^M)$	\overline{r}^{f}	$volig(r^fig)$	$b_{12} \hspace{0.1in} R_{12}^2 \hspace{0.1in} b_{16} \hspace{0.1in} R_{16}^2$	10-1	CAPM $10-1$
.25	3.97	10.23	.67	4.20	.38 4.4 .43 4.1	7.10	6.70
.40	4.09	11.14	.68	4.23	.46 7.0 .51 6.5	6.29	4.57
.55	4.35	13.03	.69	4.36	.43 7.6 .47 7.1	5.16	1.83

- Changes in $\overline{
u}$ do not affect the properties of the market portfolio but

- affect the ability of the CAPM to price the set of test portfolios. Why?
 - * The total wealth portfolio is not perfectly correlated with m_t .
 - * Higher idiosyncratic volatility of shares, higher variation in expected consumption growth, which is not correlated with shocks to consumption growth.
 - * Thus the worse performance of the CAPM

(C) Sensitivity Analysis: Dividend growth

- We have seen what our choices of $\overline{\theta}_{CF}$ and $\overline{\nu}$ imply for average returns?
- A natural question is what do these choices imply for:
 - the volatility of dividend growth,
 - the correlation coefficient between dividend and consumption growth and
 - the cash-flow betas of Cohen, Polk and Vuolteenaho (2003).

			Table IX			
	The p	properties	of the cas	h-flow	proces	S
	\overline{A} 100	[_]	(i)	01	<i>o</i> 10	
$\overline{\mathcal{V}}$	$\theta_{CF} \times 100$	$[\underline{\rho}, \rho]$	$\frac{Avge(\sigma_D^i)}{24.88}$	$\beta^1_{CF,1}$	$\beta_{CF,1}$	$Avge(\sigma_R^i)$
.25	0	[.04,.07]	24.88	1.04	.96	27.67
	.1	[21,.32]	24.29	.04	1.89	27.33
	.2	[48,.57]	22.44	-3.30	4.15	26.11
	.3	[76,.81]	18.92	-8.14	6.70	22.88
	.345	[89,.91]	16.39	-9.62	7.94	16.68
.40	0	[.02,.05]	40.04	1.09	.96	31.33
	.1	[13,.20]	39.65	.43	1.49	31.02
	.2	[29,.36]	38.50	-1.80	3.10	29.88
	.3	[46,.52]	36.55	-6.37	5.22	26.66
	.345	[53,.59]	35.40	-8.63	5.73	19.83
.55	0	[.01,.04]	56.20	1.17	.99	34.86
	.1	[10,.15]	55.87	.69	1.28	34.55
	.2	[21,.26]		-1.01	2.40	33.41
	.3	[32,.37]	53.47	-4.79	4.28	30.10
	.345	[37,.42]	52.60	-7.40	4.73	22.96

Conclusions

- The time varying market price of risk is helpful in addressing many of the time series properties of the market portfolio and interest rates (Campbell and Cochrane (1999)).
- This effect generates a counterfactual "growth premium" ...
- ... unless there is a sufficiently strong cross-sectional dispersion in cash-flow risk.
- We have shown that a model with substantial cross-sectional dispersion in cash-flow risk explains a large number of properties of the data:
 - (A) Time series properties of the market portfolio.
 - (B) The value premium and the value premium puzzle.
 - (C) The performance of the Fama and French (1993) model and, in particular, the role of HML and the performance of the conditional CAPM model.
- (D) The dynamics of the value premium.

page: 49

Recursive Preferences and Long Run Risk

- A different strand of literature focuses on recursive preferences.
 - Disentangle risk aversion from intertemporal substitution.
 - Could be useful, because we have seen that EIS generates a lot of troubles.
- Consider first the iso-elastic utility function

$$U\left(C\right) = \frac{C^{1-\gamma}}{1-\gamma}$$

- If C is stochastic, then $\gamma = -CU_{cc}/U_c$ is the coefficient of relative risk aversion.
- In an intertemporal model, with deterministic consumption $C_1, C_2, \dots \psi = 1/\gamma$ instead measures also the elasticity of intertemporal substitution.
- That is, the derivative of planned log consumption growth with respect to log interest rate

$$\psi = \frac{d\left(C_{t+1}/C_{t}\right)/\left(C_{t+1}/C_{t}\right)}{dR/R}$$

• This measures the willingness to exchange consumption today for consumption tomorrow, given the interest rate R.

Recursive Preferences and Long Run Risk

- There is no need to have such a tight relationship between the relative risk aversion coefficient and the elasticity of intertemporal substitutions.
 - Very different concepts: one applies to stochastic variables, the other to deterministic consumption paths.
- This separation is accomplished by the use of recursive utility functions.
 - For example, consider a simple two period model. At time t = 0 you know that your consumption is C_0 .
 - However, at t = 1, you may receive the stochastic consumption \widetilde{C}_1 .
 - Given the distribution of \widetilde{C}_1 , you can think what is the level of certain consumption at time t = 1 that indeed is equivalent to \widetilde{C}_1 .
 - Say this is $\overline{C}_1 = m\left(\widetilde{C}_1\right)$. Clearly, the function $m\left(.\right)$ measures the "risk-aversion."
 - Now, we can compare the consumption today C_0 and the deterministic consumption tomorrow \overline{C}_1 by using some conventional utility function defined on two commodities $W(C_1, \overline{C}_2)$.
 - Clearly, the function $W(C_1, \overline{C}_2)$ measures only the substitution preferences across the two periods and not the "risk aversion" component.

Recursive Preferences and Long Run Risk

- Recursive utility functions generalize the above.
- They are in fact defined by the following ingredients:
 - I. V_t is the "utility" at time t. \tilde{V}_{t+1} denotes the fact that it is stochastic in the future (as of time t or before).
 - II. A certainty equivalent function $m(.|\mathcal{F}_t)$ defined on the future stochastic utility \widetilde{V}_{t+1}
 - III. An aggregator function W(.,.) defined on current consumption and the certainty equivalent function.
- \bullet Specifically, we have that the utility at time t is given by

$$V_t = W\left(C_t, m\left[\widetilde{V}_{t+1}|\mathcal{F}_t\right]\right)$$

- The certainty equivalent $m\left[\widetilde{V}_{t+1}|\mathcal{F}_t
 ight]$ "records" the risk aversion component;
- The function W(x, y) records the relative preference for a good x today or the "certainty equivalent" of utility \widetilde{V}_{t+1} , y, tomorrow.

Long Run Risk

• Aggregate dividends:

$$rac{dD_t}{D_t} = g_t dt + oldsymbol{\sigma}_D d\mathbf{B}_t$$

• Drift rate of dividends:

$$dg_t = (\eta - \eta_1 g_t) dt + \boldsymbol{\sigma}_g d\mathbf{B}_t$$

- In a nutshell, long run risk is the risk that is embedded in stocks due to their sensitivity to g_t .
- Let returns be given by

$$dR = (r(g_t) + \mu(g_t)) dt + \boldsymbol{\sigma}_R(g_t) d\mathbf{B}_t$$

 \bullet where r , μ and σ_R will be determined in equilibrium.

page: 53

Recursive Preferences in Continuous Time

- Consider a (representative) agent with Epstein Zin (EZ) preferences.
- The agent maximizes

$$J_t = E_t \left[\int_t^\infty f\left(C_\tau, J_\tau \right) d\tau \right]$$

- subject to the usual wealth equation.
- The function f(C, J) is the (normalized) aggregator of current consumption and continuation value.
- Under EZ preferences, we have

$$f(C,J) = \frac{\phi}{\rho} \alpha J \left(\left(\frac{C}{(\alpha J)^{\frac{1}{\alpha}}} \right)^{\rho} - 1 \right)$$

• where

$$\rho = 1 - \frac{1}{\psi}; \alpha = 1 - \gamma$$

• and $\gamma = RRA$ and $\psi = EIS$.

The Bellman Equation

• The Bellman Equation is

$$0 = \max_{C,\theta} f(C, J) + J_g E[dg] + J_W E[dW]$$
(1)
+ $\frac{1}{2} \left(J_{gg} E[dg^2] + 2J_{gW} E[dgdW] + J_{WW} E[dW^2] \right)$ (2)

- The solution strategy is as usual.
 - I. The FOC with respect to C and θ are

$$f_c = J_W$$

$$0 = J_W W \mu(g) + J_{gW} W \boldsymbol{\sigma}_R \boldsymbol{\sigma}'_g + J_{WW} W^2 \theta \boldsymbol{\sigma}_R \boldsymbol{\sigma}_R$$

II. Conjecture:

$$J\left(W,g\right) = F\left(g\right)\frac{W^{\alpha}}{\alpha}$$

III. Compute J_W , J_WW , etc.

The Solution

IV. Compute

$$C = \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{\rho}{\alpha}\frac{1}{\rho-1}} W$$

$$\theta_t = \frac{1}{1-\alpha} \frac{\mu_t}{\boldsymbol{\sigma}_R \boldsymbol{\sigma}_R'} + \frac{1}{1-\alpha} \frac{\boldsymbol{\sigma}_g \boldsymbol{\sigma}_R'}{\boldsymbol{\sigma}_R \boldsymbol{\sigma}_R'} \frac{F_g}{F}$$

V. Resubstitute everything back into the Bellman Equation

$$0 = \alpha \left(\frac{1}{\rho} - 1\right) \phi^{-\frac{1}{\rho-1}} F\left(g\right)^{\frac{1}{\alpha}\frac{\rho}{\rho-1}} - \frac{\phi}{\rho} \alpha + \frac{F_g}{F} \left(\eta - \eta_1 g_t\right) + \alpha \theta_t \mu\left(g\right) + \alpha r\left(g\right)$$
$$+ \frac{1}{2} \left(\frac{F_{gg}}{F} \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g' + 2\frac{F_g}{F} \alpha \theta \boldsymbol{\sigma}_R \boldsymbol{\sigma}_g' + \alpha \left(\alpha - 1\right) \theta^2 \boldsymbol{\sigma}_R \boldsymbol{\sigma}_R'\right)$$

- VI. In a portfolio problem, we would substitute θ as well, and solve the resulting PDE. Here, instead, we use market clearing conditions.
 - But the type of solution is similar.

Market Clearing

- Use the equilibrium condition $\theta_t = 1$ to obtain two equations
 - I. Equity Premium

$$\mu_t = (1 - \alpha) \boldsymbol{\sigma}_R \boldsymbol{\sigma}'_R - \boldsymbol{\sigma}_g \boldsymbol{\sigma}'_R \frac{F_g}{F}$$

II. Bellman Equation

$$0 = \alpha \left(\frac{1-\rho}{\rho}\right) \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{1}{\alpha}\frac{\rho}{\rho-1}} - \frac{\phi}{\rho} \alpha + \frac{F_g}{F} (\eta - \eta_1 g_t) + \frac{1}{2} \alpha (1-\alpha) \boldsymbol{\sigma}_R \boldsymbol{\sigma}_R' + \alpha r(g) + \frac{1}{2} \frac{F_{gg}}{F} \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g'$$

- We still need to determine $\sigma_R \sigma'_R$ and r(g).
- Use market clearing conditions

$$C = D; \quad W = P$$

• Substitute in the consumption equation

$$C = \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{\rho}{\alpha}\frac{1}{\rho-1}} W$$

Consumption Claim

 \bullet we obtain the price of a consumption claim

$$P_t = C_t \ \phi^{\frac{1}{\rho-1}} \ F\left(g_t\right)^K$$

where

$$K = \frac{\rho}{\alpha} \frac{1}{1 - \rho}$$

• Use Ito's Lemma to find

$$\frac{dP}{P} = \mu_P dt + \boldsymbol{\sigma}_P d\mathbf{B}_t$$

• where

$$\mu_P = \left(g_t + K \frac{F_g}{F} \left(\eta - \eta_1 g_t\right) + \frac{1}{2} \left(K \left(K - 1\right) \left(\frac{F_g}{F}\right)^2 + K \frac{F_{gg}}{F}\right) \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g' + K \frac{F_g}{F} \boldsymbol{\sigma}_g \boldsymbol{\sigma}_D'\right)$$
$$\boldsymbol{\sigma}_P = \boldsymbol{\sigma}_R = \left(\boldsymbol{\sigma}_D + K \frac{F_g}{F} \boldsymbol{\sigma}_g\right)$$

• We can substitute σ_R into the BE. But we still need the risk free rate r(g).

Consumption Claim

• We know that

$$E\left[\frac{dP}{P} + \frac{C}{P}dt\right] - r(g) = \mu_t$$

• Thus from above

$$r(g) = \mu_P + \frac{C}{P} - \mu_t$$

- Note: μ_P comes from Ito's Lemma above (dP/P), while μ_t comes from the equilibrium condition $\theta_t = 1$.
- Finally, substitute everything back in the Bellman Equation to obtain

$$0 = \alpha \frac{1}{\rho} \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{1-\rho}{\alpha\rho-1}} - \frac{\phi}{\rho} \alpha + \alpha g_t + (1+\alpha K) \frac{F_g}{F} (\eta - \eta_1 g_t) - \frac{1}{2} \alpha (1-\alpha) \boldsymbol{\sigma}_D \boldsymbol{\sigma}_D$$
$$+ (1+K\alpha) \alpha \frac{F_g}{F} \boldsymbol{\sigma}_D \boldsymbol{\sigma}_g' + (1+\alpha K) \frac{1}{2} \frac{F_{gg}}{F} \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g' + (1+\alpha K) \frac{1}{2} \alpha K \left(\frac{F_g}{F}\right)^2 \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g'$$

• It looks tough, but we can apply Campbell and Viceira log-linearization methodologies.

Log-Linear Solution

• Log linearization: The first term is

$$\frac{C}{W} = \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{\rho}{\alpha}\frac{1}{\rho-1}}$$

• Approximate

$$\frac{C}{W} \approx h_0 + h_1 \left(c - w \right)$$

- where
$$h_1 = e^{\overline{c-w}}$$
 and $h_0 = h_1(1 - log(h_1))$.

1

 \bullet Taking logs in C/W

$$c - w = -\frac{1}{\rho - 1} \log \left(\phi\right) - K \log \left(F\left(g\right)\right)$$

• we then obtain the approximation

$$\frac{C}{W} = \phi^{-\frac{1}{\rho-1}} F(g)^{\frac{\rho}{\alpha}\frac{1}{\rho-1}}$$

$$\approx h_0 + h_1(c-w)$$

$$= h_0 - \frac{h_1}{\rho-1} \log(\phi) - h_1 K \log(F(g))$$

An Approximate Solution to the PDE

 \bullet Substitute in the PDE

$$0 \approx \alpha \frac{1}{\rho} h_0 - \frac{\alpha}{\rho} \frac{h_1}{\rho - 1} \log (\phi) - \frac{\alpha}{\rho} h_1 K \log (F(g)) - \frac{\phi}{\rho} \alpha + \alpha g_t + (1 + \alpha K) \frac{F_g}{F} (\eta - \eta_1 g_t) - \frac{1}{2} \alpha (1 - \alpha) \boldsymbol{\sigma}_D \boldsymbol{\sigma}_D + (1 + K\alpha) \alpha \frac{F_g}{F} \boldsymbol{\sigma}_D \boldsymbol{\sigma}_g' + (1 + \alpha K) \frac{1}{2} \frac{F_{gg}}{F} \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g' + (1 + \alpha K) \frac{1}{2} \alpha K \left(\frac{F_g}{F}\right)^2 \boldsymbol{\sigma}_g \boldsymbol{\sigma}_g'$$

 \bullet The solution to this PDE has the form

$$F\left(g\right) = e^{A_0 + A_1 g}$$

• Use method of undetermined coefficients and find

$$A_1 = \frac{\alpha \left(1 - \rho\right)}{h_1 + \eta_1}$$

• and another equation for A_0 .

The Results

I. Price consumption ratio

$$\frac{P_t}{C_t} = \phi^{-\psi} \exp\left(KA_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1}\right)g_t\right)$$

• Notably: P/C is increasing in g_t iff $EIS = \psi > 1$

- Powerful additional variation in prices due to variation in g_t .
- E.g. With learning, D_t and g_t are positively correlated \implies higher premium than EIS < 1.

II. Diffusion term in dR

$$\boldsymbol{\sigma}_{R} = \boldsymbol{\sigma}_{D} + \frac{1-1/\psi}{h_{1}+\eta_{1}}\boldsymbol{\sigma}_{g}$$

• The diffusion component of returns shows two sources of risk

(A) Contemporaneous dividend shocks, from D_t

- (B) Long Run risk, from g_t
- Second component is higher for EIS > 1.

The Results

III. Equity premium

$$u_t = \gamma \boldsymbol{\sigma}_R \boldsymbol{\sigma}'_R - \frac{\gamma \left(1 - 1/\psi\right)}{h_1 + \eta_1} \boldsymbol{\sigma}_R \boldsymbol{\sigma}'_g$$

= $\gamma \boldsymbol{\sigma}_D \boldsymbol{\sigma}'_D + \left(\frac{2\gamma - \gamma/\psi - 1/\psi}{h_1 + \eta_1}\right) \boldsymbol{\sigma}_D \boldsymbol{\sigma}'_g + \left(\frac{1 - 1/\psi}{h_1 + \eta_1}\right) \left(\frac{\gamma - 1/\psi}{h_1 + \eta_1}\right) \boldsymbol{\sigma}_g \boldsymbol{\sigma}'_g$

- The first equation shows that if EIS > 1, then the equity premium increase because $\sigma_R \sigma'_R$ increases, but it may decrease because of the Merton hedging demand component $\sigma_R \sigma'_q$
- IV. Risk free rate

$$r = \phi + \frac{1}{\psi}g_t - \frac{1}{2}\gamma\left(1 + \frac{1}{\psi}\right)\boldsymbol{\sigma}_D\boldsymbol{\sigma}_D - \frac{1}{2}\gamma\left(\frac{1 - \frac{1}{\psi}}{h_1 + \eta_1}\right)^2\boldsymbol{\sigma}_g\boldsymbol{\sigma}_g' + \left(\frac{\frac{1}{\psi} - \gamma}{h_1 + \eta_1}\right)\boldsymbol{\sigma}_g\boldsymbol{\sigma}_D'$$

- The risk-free rate puzzle was due to γ multiplying g_t under CRRA utility.
- We can now increase γ without affecting the EIS, resolving in part the risk free puzzle.

Quantitative Results

- Can this model explain the various puzzles *quantitatively*?
 - Some, but not all.
 - The following table uses the parameters obtained by Bansal and Yaron (2005, JF).
 - In monthly units: $E[dC/C] = \eta/\eta_1 = .0015$, $\eta_1 = .0212$, $\sigma_c = .0078$, $\sigma_g = 0.3432 \times 10^{-3}$

		Consu	mption Claim	Risk Free Rate		
γ	ψ	μ_R	σ_R	r_{f}	$\sigma(r_f)$	
7.5	0.5	-0.81	5.65	4.26	4.00	
7.5	1.5	1.15	3.20	3.04	1.33	
10	0.5	-1.28	5.70	3.65	4.00	
10	1.5	1.55	3.20	2.85	1.33	
45	0.5	-9.34	6.05	-5.53	3.99	
45	1.5	6.71	3.14	0.29	1.33	

• In addition, expected returns and volatility are constant.

page: 64

Extension 1: Dividend Claim

• Consider an additional asset whose dividend follows the process

$$\frac{d\delta}{\delta} = (\mu_d + \lambda g_t) \, dt + \boldsymbol{\sigma}_{\delta} d\mathbf{B}_t$$

- $-\lambda$ consumption leverage parameter (Abel (1990)).
 - * Measure of long run cash flow risk.

 $-\sqrt{\sigma_{\delta}\sigma_{\delta}'}$ = dividend volaility.

- * Higher than consumption volatility.
- Same methodology as before.
- Price of dividend claim

$$\frac{S_t}{\delta_t} = \exp\left(A_0^{\delta} + \left(\frac{\lambda - 1/\psi}{h_1^{\delta} + \eta_1}\right)g_t\right)$$

Extension 1: Dividend Claim

• The diffusion of stock return

$$oldsymbol{\sigma}_R^\delta = oldsymbol{\sigma}_\delta + \left(rac{\lambda - 1/\psi}{h_1^\delta + \eta_1}
ight) oldsymbol{\sigma}_g$$

- A higher λ increases the volatility of stock returns

• The return premium of the dividend claim must be given by

$$\mu_R^{\delta} = \gamma \boldsymbol{\sigma}_R^{\delta} \boldsymbol{\sigma}_R' - \frac{\gamma \left(1 - 1/\psi\right)}{h_1 + \eta_1} \boldsymbol{\sigma}_R^{\delta} \boldsymbol{\sigma}_g'$$

- A higher λ increases the equity risk premium.

Quantitative Results

- Can this model explain the returns and volatility *quantitatively*?
 - Yes.

		Divide	end Claim	Risk	Free Rate	
γ	ψ	μ_R	σ_R	r_{f}	$\sigma(r_f)$	$\overline{\log(P/D)}$
		Par	nel A: $\lambda =$	3, η_1	= 0.0212	
7.5	0.5	1.34	13.11	4.26	4.00	3.30
7.5	1.5	3.90	16.45	3.04	1.33	3.10
10	0.5	1.96	13.11	3.65	4.00	3.30
10	1.5	5.13	16.21	2.85	1.33	2.89
		Р		0 F	0.0010	

Panel B: $\lambda=3.5$, $\eta_1=0.0212$											
7.5	0.5	1.96	14.12	4.26	4.00	3.18					
7.5	1.5	4.66	17.98	3.04	1.33	3.00					
10	0.5	2.86	14.10	3.65	4.00	3.11					
10	1.5	6.07	17.58	2.85	1.33	2.76					

page: 67

Extension 2: Stochastic Volatility

• Assume

$$\frac{dD_t}{D_t} = g_t dt + \sqrt{v_t} \boldsymbol{\sigma}_D d\mathbf{B}_t$$
$$\frac{d\delta}{\delta} = (\mu_d + \lambda g_t) dt + \sqrt{v_t} \boldsymbol{\sigma}_\delta d\mathbf{B}_t$$

where

$$dg_t = (\eta - \eta_1 g_t) dt + \sqrt{v_t} \boldsymbol{\sigma}_g d\mathbf{B}_t$$

$$dv_t = (n - n_1 v_t) dt + \sqrt{v_t} \boldsymbol{\sigma}_v d\mathbf{B}_t$$

• Use the same methodology.

Results

I. Price consumption ratio

$$\frac{P_t}{C_t} = \phi^{-\psi} \exp\left(KA_0 + \left(\frac{1 - 1/\psi}{h_1 + \eta_1}\right)g_t + A_2^c v_t\right)$$

• $A_2^c < 0$: An increase in consumption volatility decreases the P/C ratio.

II. The consumption claim equity premium

$$\mu_t = v_t \left(\gamma \widetilde{\boldsymbol{\sigma}}_R \widetilde{\boldsymbol{\sigma}}_R' - \frac{\gamma \left(1 - 1/\psi\right)}{h_1 + \eta_1} \boldsymbol{\sigma}_g \widetilde{\boldsymbol{\sigma}}_R' - A_2 \boldsymbol{\sigma}_v \widetilde{\boldsymbol{\sigma}}_R' \right)$$

where

$$\widetilde{\boldsymbol{\sigma}}_{R} = \boldsymbol{\sigma}_{D} + \frac{1 - 1/\psi}{h_{1} + \eta_{1}} \boldsymbol{\sigma}_{g} + KA_{2}\boldsymbol{\sigma}_{v}$$

Results

III. The price dividend ratio of dividend claim

$$\frac{S_t}{\delta_t} = \exp\left(A_0^{\delta} + \left(\frac{\lambda - 1/\psi}{h_1^{\delta} + \eta_1}\right)g_t + A_2^{\delta}v_t\right)$$

• $A_2^{\delta} < 0$: An increase in consumption volatility decreases the P/D ratio.

IV. The dividend claim equity premium

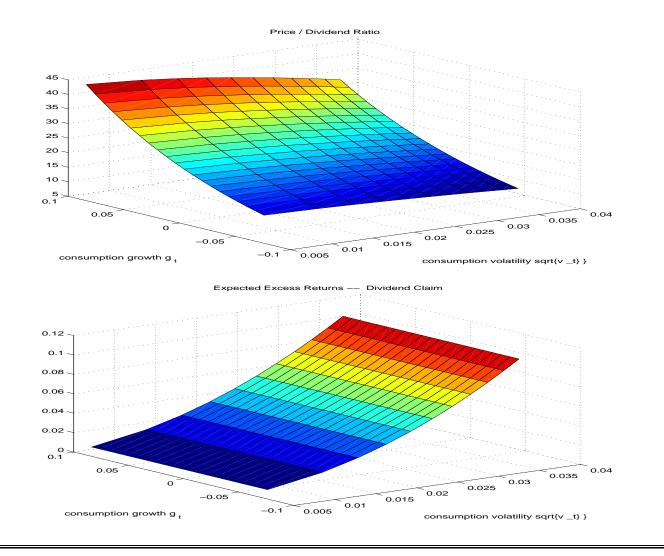
$$\mu_{R}^{\delta} = v_{t} \left(\gamma \widetilde{\boldsymbol{\sigma}}_{R}^{\delta} \widetilde{\boldsymbol{\sigma}}_{R}' - \frac{\gamma \left(1 - 1/\psi\right)}{h_{1} + \eta_{1}} \widetilde{\boldsymbol{\sigma}}_{R}^{\delta} \boldsymbol{\sigma}_{g}' - A_{2} \widetilde{\boldsymbol{\sigma}}_{R}^{\delta} \boldsymbol{\sigma}_{v}' \right)$$

where

$$\widetilde{\boldsymbol{\sigma}}_{R}^{\delta} = \left(\boldsymbol{\sigma}_{\delta} + \left(\frac{\lambda - 1/\psi}{h_{1}^{\delta} + \eta_{1}}\right)\boldsymbol{\sigma}_{g} + A_{2}^{\delta}\boldsymbol{\sigma}_{v}\right)$$

Quantitative Results

• Using the parameters in Bansal and Yaron (2006)



Quantitative Results

- Especially along the volatility axis $\sqrt{v_t}$, there is a negative relation between P/D and $E_t[dR_t]$
 - \Longrightarrow Predictability of stock returns

Recent Application: The Cross-Section of Stock Returns

- ullet Bansal, Dittmar and Lundbland (2005, JF) show that value stocks have a higher cash flow risk λ
- They run a regression on quarterly data

$$g_{i,t} = \gamma_i \left(\frac{1}{K} \sum_{k=1}^K g_{c,t-k} \right) + u_{i,t} \qquad K = 8$$

where

 $-g_{i,t} \rightarrow$ Demeaned log real dividend growth rate on portfolio *i*.

 $-g_{c,t} \rightarrow$ Demeaned log real growth rate in aggregate consumption.

Cash-flow betas: Bansal et al. (2005)										
Cash-flow def.	Growth									Value
	1	2	3	4	5	6	7	8	9	10
${\gamma}_i$	2.98	- 3.43	.02	28	.46	1.70	.78	4.45	4.74	8.44
std. err.	(2.90)	(2.27)	(2.39)	(2.81)	(1.81)	(1.51)	(1.14)	(1.66)	(3.08)	(4.08)

page: 73

Cash Flow Risk and the Cross-Section of Stock Returns

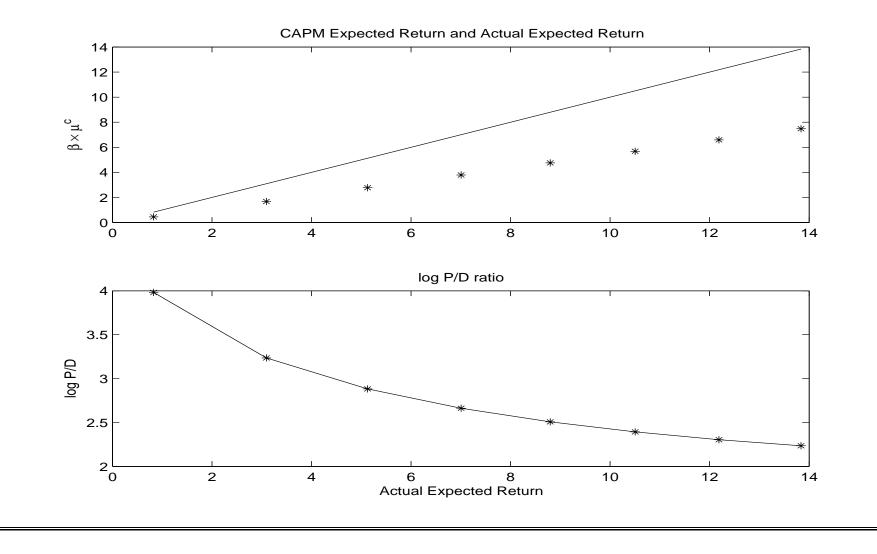
- For $\lambda = 3$: ER = 5.13% and $\log(P/D) = 2.89$;
- For $\lambda = 8$: ER = 13.83% and $\log(P/D) = 2.23$;
 - Theoretically: high P/D correlates with low ER
 - $-\Longrightarrow \mathsf{Value} \ \mathsf{premium}$
 - References: Hansen, Heaton and Li (2005), Kiku (2005)
- This is good: But this per se' does not resolve the Value Premium Puzzle
 - One needs to show that market beta does not explain the return differential
 - Need of a full fledged calibration / simulation.
- For instance, the theoretical betas with respect to consumption claim are

$$-\lambda = 3: \ \beta = \left(\sigma_R^{\delta} \sigma_R'\right) / \left(\sigma_R \sigma_R'\right) = 1.79$$
$$-\lambda = 8: \ \beta = \left(\sigma_R^{\delta} \sigma_R'\right) / \left(\sigma_R \sigma_R'\right) = 4.83$$

- \implies value has a higher beta than growth.
- The question is then whether it is sufficiently high to justify the spread differential (in the model).

Long Run Risk and Value Premium Puzzle

• The following figure plots $E[dR^{\delta}]$ versus $\beta \times \mu^c$ for $\lambda=1,...,8$



Long Run Risk and Value Premium Puzzle

- Delicate interpretation of these results:
 - Bansal et al (2005) estimates of λ are at the *portfolio* level.
 - l.e. these are the characteristics of mutual funds that pay dividends according to a specific trading strategy
 - \ast Stocks are sorted by M/B and placed in bins.
 - \ast Dividends are calculated as the total dividend payouts from these portfolios
 - $\ast\,$ Importantly, the amount reinvested in the portfolio at year end is equal to the total capital gain.
 - Characteristics of *portfolio* cash flows may differ from those of value and growth *firms*
 - \ast E.g. Average growth rate of cash flows is 4% / year for value , while it is .76%/year for growth
 - * Curious result: At the individual firm level, Fama and French show that value firms grow *less* than growth firms.
 - * But portfolio cash flows are contaminated by re-investment policy.
 - Deeper investigation needed.

Conclusions

- Two leading models to explain asset returns in macro finance
 - I. Habit preferences \implies variation in market price of risk.
 - II. Long run risk \implies variation in the amount of risk.
- Habit preferences explain a wide variety of facts
 - But need to assume unrealistic amount of cash flow risk to overcome growth premium induced by "discount effects"
- Long run risk also explain a wide variety of facts
 - But research so far has only looked at portfolio cash flows, and not individual cash flows.
 - Moreover, it is not a general equilibrium model. Market clearing restrictions are not imposed.
- Long run risk is the hot topic of the moment. Habit has lost its allure.
- Additional applications
 - Lettau, Ludvigson and Wachter (Forthcoming, RFS): Lower consumption volatility pushed up prices in the 1990s.
 - Croce, Lettau and Ludvigson (2006): Learning, long run risk and the value premium