
The Peso Problem Hypothesis and Stock Market Returns¤

Pietro Veronesi

Graduate School of Business

University of Chicago

1101 E. 58th St.

Chicago IL 60637 USA

ph: (773) 702 6348

e-mail: pietro.veronesi@gsb.uchicago.edu

This Version: November 2002

JEL Classi…cation Number: G12

Keywords: Peso Problem, Learning, Uncertainty

¤I thank Nick Barberis, Gadi Barlevy, Domenico Cuoco, Chris Good, Andrew Metrick, Luis Viceira, Jonathan

Wright, and seminar participants at Harvard, Chicago GSB, Northwestern, Columbia, Duke, Berkeley, London

Business School, UCLA, Rochester, UBC and Michigan. I am especially grateful to John Y. Campbell for his

useful comments while writing my Ph.D. dissertation at Harvard University, on which this article heavily draws

on. Any remaining errors are my own.



Abstract

The Peso Problem Hypothesis has often been advocated in the …nancial literature to explain

the historically puzzlingly high risk premium of stock returns. Using a dynamic model of

learning, this paper shows that the implications of the Peso Problem Hypothesis are much

more far reaching than the ones commonly advocated, implying most of the stylized facts about

stock returns. These include high risk premia, time-varying volatility, asymmetric volatility

reaction to good and bad news, excess sensitivity of price reaction to dividend changes and

thus excess return volatility,



Introduction

Stock market returns have a number of features that have been puzzling …nancial economists

for long. Among others, these include a high realized risk premium, excess volatility, changing

volatility, asymmetric reaction of volatility to good and bad news.1 The …nancial literature

has put forward various models to explain one or more of these stylized facts. As an example,

a number of papers have argued that the puzzlingly high risk premium of stock returns may

be due to a “Peso problem situation” (see e.g. Rietz (1988), Brown, Goetzmann and Ross

(1995), Danthine and Donaldson (1998), Goetzman and Jorion (1999a,b)): that is, since no

catastrophic event ever realized during the sampling period to the US economy ex post realized

returns are high even if ex ante expected returns are low.

However, the possibility that a bad event could happen may a¤ect investors expectations

in many other ways aside from generating higher returns ex-post. For example, referring to a

comment by Robert C. Merton about the high volatility during the 30’s, Schwert (1989) writes:

‘... the Depression was an example of the so called “Peso problem,” in the sense

that there was legitimate uncertainty about whether the economic system would

survive.... Uncertainty about whether the “regime” had changed adds to the funda-

mental uncertainty re‡ected in past and future volatility of macroeconomic data.’

This paper builds on this intuition to explore the implications for the ex-post behavior of

stock returns under the assumption that a bad state could happen but it did not during the

sample period. Using an intertemporal, rational expectations model of learning, this paper
1The literature on each of these …ndings is immense, and I refer the reader to classic textbooks, such as

Campbell, Lo and MacKinlay (1997) or Cochrane (2000) for references and discussion. Classic early references

are Mehra and Prescott (1985) for the equity premium; Shiller (1981) and LeRoy and Porter (1981) for excess

volatility; Engle (1982), Bollerslev (1986) and Nelson (1991) for the modeling of time-varying volatility; French

et al. (1987), Schwert (1989, 1990), Hamilton and Lin (1997) for a characterization of time-varying return

volatility and macro-economic factors.
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shows that the Peso Problem Hypothesis has much more far reaching implications than just

a high realized equity premium. Indeed, I show that all the stylized facts described above are

implied by a model where there is a very small probability that the economy may enter into a

very long recession.

Speci…cally, suppose that economic fundamentals – call them “dividends” – are generated by

a di¤usion process whose drift is not observable. For simplicity, the drift is assumed constant for

most of the time. Suppose now that at every instant, there is an ex-ante very small probability

that the economy enters into a long recession. That is to say, there is a very small probability

that the drift changes to a lower value and there is also a small probability to revert back to

normal. Since investors do not observe the true drift but can only learn about it by observing

the past realizations of fundamentals, this model implies that investors’ uncertainty about the

true drift ‡uctuates over time. For example, suppose that at some time t investors’ conditional

probability of the normal state ¼(t) is close to 1. A sequence of negative dividend innovations

will tend to decrease ¼(t) driving it closer to 1
2 , that is the point of maximum uncertainty. It

is intuitive that when there is more uncertainty, investors’ beliefs tend to react more to news.

Hence, since in a rational expectations model the stock price depends on investors’ conditional

expectations, during period of high uncertainty investors’ expect to react heavily to news and

hence they also expect that returns are more volatile. As a consequence, they require a higher

discount for holding the stock. This feedback e¤ects from the sensitivity of investors’ beliefs to

news onto the stock price itself determines most of the results. Indeed, Veronesi (1999) shows

that this model implies that the equilibrium price of the asset is an increasing and convex

function of ¼(t) and studies the general properties of the model. In particular, the stock price

is very steep for ¼(t) close to one and rather ‡at for ¼(t) close to zero which yields to a stock-

market overreaction to bad news in good times and an underreaction to good news in bad

times.

Building on the results from Veronesi (1999), this paper formally studies the ex-post features

of stock returns under the assumption that during the sampling period it never occurred that

the drift of the dividend process shifted to the lower one: that is, the economy never entered
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a long recession. This assumption formalizes the “Peso problem hypothesis” and captures

the spirit of Merton’s comment reported above. Conditioning on this assumption, I show the

following: …rst and most obviously, there is a positive bias on the mean realized returns. This

bias is positively albeit not-linearly related to stock return volatility and to the degree of risk

aversion. Second, returns display “excess volatility”, in the sense that they are more volatile

than the underlying fundamentals (dividends). This is due to an implied excess sensitivity

of prices to dividend changes. Third, the volatility of returns changes over time, it is mean

reverting and it is negatively correlated with realized returns, increasing after bad news and

decreasing after good news. I …nally perform Monte Carlo simulations to gauge the size of the

e¤ects reported in the theoretical section.

The paper is organized as follows: in section 1, I review the model and the results in

Veronesi (1999). Section 2 investigates the properties of stock returns under the “Peso Problem

Hypothesis.” Section 3 relates the model to U.S. data and describes the results of Monte Carlo

simulations. Section 4 concludes. All results are given in the appendices.

1. The Model

The model is similar to Campbell and Kyle (1993), Wang (1993) and Veronesi (1999), and

thus I describe it only brie‡y. I consider an economy with a single physical consumption good,

which can be allocated to investment or consumption. Two investment assets are available

to investors/consumers: a risky asset and a riskless asset. The risky asset yields a stochastic

dividend rate D (t) ; described by the linear process:

dD = µdt + ¾d» (1.1)

where the assumptions about µ (t) are described below, ¾ is a constant, and » (t) denotes a

Wiener process. The supply of the risky asset is normalized to unity. Instead, the riskless

asset is in…nitely elastically supplied and yields a constant rate of return r.

Finally, I assume that investors/consumers are endowed with a CARA utility function over
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consumption U(c; t) = ¡e¡½t¡°c, where ½ is the parameter of time preference and ° is the

coe¢cient of absolute risk aversion.

1.1. Modeling a Peso Problem Situation

I now capture the spirit of Merton’s quote in the Introduction by assuming the following:

(1) during the sample period [0; T ] the drift rate of dividends has been a constant µ(t) =

µ; (2) there is a small ex-ante chance that the drift rate of dividends shifts to a low state

µ (t) = µ < µ; and (3) investors do not actually observe µ (t) and hence are unaware of

whether a shift ever occurred or not. This last assumption is the key ingredient to generate

the additional implications of the Peso-Problem situation uncovered in this paper, as it is

responsible for the additional “uncertainty about whether the “regime” had changed” that

“adds to the fundamental uncertainty,” to use the words of Merton.

More speci…cally, I assume that during an in…nitesimal time interval ¢; there is probability

¸¢ that µ (t) shifts to the low state µ from the normal state µ: Moreover, I also assume that

in this event there is yet probability ¹¢ that the state would shift back to the normal state µ,

with ¹ >> ¸. Thus, in this model a bad state is characterized by two parameters: How low

the drift rate µ is, and for how long it will last. To be consistent with the assumption of a Peso

Problem situation, the probability of shifting to the bad state ¸ must be chosen very small,

such as ¸ = :005; which implies a shift once every 200 years. However, in order to ensure that

unconditionally the economy is growing, I will also be assuming ¹ >> ¸. Sections 2 and 3 will

further discuss these issues and the parameter choices.

1.2. Investors’ Posterior Probability

Investors only observe the realized series of dividends. Let fF(t)g be the …ltration generated

by the dividend stream (D(¿))t¿=0 and de…ne the posterior probability of the good state µ by

¼(t) = Pr(µ(t) = µjF(t)):
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We then have:

Lemma 1.1: The posterior probability ¼(t) satis…es the stochastic di¤erential equation:

d¼ = (¸ + ¹)(¼s ¡ ¼)dt + h(¼)dv (1.2)

where ¼s = ¹= (¹ + ¸), h(¼) =
µ
µ¡µ
¾

¶
¼(1 ¡ ¼) and dv = 1

¾ [dD ¡ E (dDjF(t))]. Moreover, dv

is a Wiener Process with respect to F(t).

Proof: See Liptser and Shiryayev (1977, pg. 348). See also David (1997). 2

Notice that (¼s; 1 ¡ ¼s) is simply the stationary distribution of the two states. Also, notice

that even if the drift µ(t) shifts between two discrete states, the process for the posterior

distribution ¼(t) is continuous.

1.3. The Equilibrium

A rational expectations equilibrium is de…ned as follows:

De…nition 1.1: A Rational Expectations Equilibrium (REE) is given by

(P (D; ¼); X(W;P; D; ¼); c(W;P;D; ¼)), where P (D;¼) is the price level for given dividend

level D and belief ¼, X(W; P; D; ¼) and c(W;P;D; ¼) are the demand for the risky asset and

the consumption level for given level of wealth W , price P , dividend and belief, respectively,

such that

1. Utility Maximization: (c(¢); X(¢)) maximizes investors’ expected intertemporal utility,

i.e.

max
c;X

E
·Z 1

0
U(c; s)dsjF(0)

¸

subject to an intertemporal budget constraint and a transversality condition;

2. Market Clearing: P (¢; ¢) adjusts so that X(W; P (D;¼); ¼) = 1 for every W and every

pair (D; ¼)
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The assumption of CARA utility function has the convenient property that the demand

of risky asset X(W;P;D; ¼) is independent of wealth level W . Therefore, I will denote it as

X(P;D; ¼) only. Similarly, consumption won’t depend on P and D.

1.3.1. Equilibrium Prices

The following proposition is proven in Veronesi (1999).

Proposition 1.1: (a) Let the conditional expectation of future dividends be denoted by

P ¤(D; ¼) ´ E
·Z 1

0
e¡rsD(t + s)ds j D(t) = D;¼(t) = ¼

¸
:

Then, there exists a REE where the price function P (D;¼) is given by:

P (D;¼) = p0 + S(¼) + P ¤(D; ¼) (1.3)

= p0 + S(¼) + pDD + p1 + p¼¼ (1.4)

where p0 = ¡°¾2r2 , pD = 1
r , p1 = µ

r2 +
µ

µ¡µ
r2(¸+¹+r)

¶
¹, p¼ = (µ¡µ)

r(¸+¹+r) and S(¢) is a negative,

convex and U-shaped function of ¼ 2 [0; 1] which satis…es the di¤erential equation (4.3) in the

Appendix. A.

(b) Let ¸ = ¹ = 0 and let µ = µ. Then the solution reduces to

P (D; µ) = p0 + pDD + pµµ (1.5)

where p0 and pD are in part (a) and pµ = 1=r2.

The fact that S(¼) is negative implies that the equilibrium price function P (D; ¼) in (1.3)

is given by a discount p0 + S(¼) < 0 over discounted expected dividends P ¤(D;¼). Since

P ¤(D;¼) is the price that would occur if investors were risk neutral, I will refer to it as the

risk-neutral price. Since S(¼) is U-shaped, this discount is smaller for extreme values of ¼ (i.e.

for ¼ close to 0 and 1) than for ¼ close to 1
2 . Figure 1 plots P ¤(D; ¼) and P (D;¼) for the
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calibrated parameter in Section 3.2 Finally, notice that part (b) contains the price function of

the asset in the case where investors know that the drift rate is µ and that it is a constant.

This will allow us also to address the point of model misspeci…cation.

Veronesi (1999) contains additional results in terms of conditional expected returns and con-

ditional volatility. I refer the reader to my earlier work, and rather proceed to the implications

of a peso-problem situation for returns.

2. Stock Returns under the “Peso Problem Hypothesis”

This section investigates the theoretical properties of returns under the “Peso Problem Hy-

pothesis,” as modeled in the previous section. Speci…cally, following Bossaerts (1996), I take

the perspective of the econometrician and investigate how investors’ conditional expectation

is a¤ected by the fact that ex post no change in regime actually occurred (but they didn’t

know). That is to say, if during the sample period [0; T ] the state has been µ, investors will

only observe realizations of the process dD = µdt + ¾d». This sequence of observations has

a speci…c e¤ect on investors posterior probability ¼ (t), through the updating rule (1.2), that

on average will tend to be concentrated in an area close to one. These sequences of dividends

and probabilities in turn have implications on the time series of equilibrium stock prices and

therefore on the time series of returns, which is the ultimate object of the investigation. The

next two sections investigate these e¤ects.

2.1. The “Peso Problem” and the Small-Sample Bias in Expected Returns

For notational convenience, I will let Eµ[¢ jF(t)] denote the expectation operator under the

assumption that investors’ information is described by F(t) – that is, the probability ¼(t) –

but dividend realizations are generated by the process (1.1) with µ(t) = µ. As in Campbell
2All plots use the parameters assumed in Table 1. The reader is referred to Veronesi (1999) for other similar

plots with di¤erent parameter values.

7



and Kyle (1993), Wang (1993) and Veronesi (1999), it is convenient to state the results about

returns in terms of dollar excess returns. That is, I will let dQ = (D ¡ rP ) dt + dP denote the

return on a zero investment portfolio long one share of the asset and …nanced by borrowing

at the risk-free rate r. As in proposition 1.1, a star “*” will denote quantities under risk-

neutrality. I now obtain the implication for conditional expected returns under risk-neutrality

and under risk-aversion.

Proposition 2.1: Let µ (t) = µ during the sample period [0; T ]. Then:

(a) If investors are risk neutral, the conditional expected return is positive and given by:

Eµ[dQ¤ jF(t)] =
µ ¡ µ

r
(1 ¡ ¼)

Ã
1 +

µ ¡ µ
(¸ + ¹ + r)¾

h(¼)

!
dt (2.1)

=
µ ¡ µ

¾
(1 ¡ ¼)¾P ¤(¼)dt (2.2)

where ¾P ¤(¼) = 1
r

µ
1 + µ¡µ

(¸+¹+r)¾h(¼)
¶

is the volatility of dQ¤ under risk-neutrality.

(b) If investors are risk averse, then the expected return are given by:

Eµ[dQ jFt] =

Ã
°¾ + (°rp¼ + f 0(¼))h(¼) +

Ã
µ ¡ µ

¾

!
(1 ¡ ¼)

!
¾P (¼)dt (2.3)

where ¾P (¼) = ¾P¤(¼) + S0(¼)h(¼) is the volatility of dQ, and f (¼) is a U-shaped, convex

function of ¼ that satis…es the ODE (4.1) in Appendix A.

Part (a) shows that if we suppose the state has been µ(t) = µ over the sample period, the

time series of excess returns should display a positive drift even under risk neutrality. This is

of course not surprising and it has been discussed already in the literature on the Peso Problem

(see e.g. Rietz (1988), Danthine and Donaldson (1998)). However, equation (2.2) also shows

that we should observe a positive relationship between excess returns and volatility, although

the coe¢cient to the stock return volatility ¾P¤(¼) is not constant.

Part (b) shows a similar positive relationship between returns and volatility, but this time

with a positive risk aversion coe¢cient. A more intuitive formula can be obtained through the
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decomposition:

Eµ[dQ jFt] = E[dQ jFt] + Eµ[dQ¤jFt] + S0(¼)h(¼)Eµ[dv jFt]:

Thus, the presence of risk aversion a¤ects the small sample bias in stock returns. In fact, we

see that the expected return conditional on µ(t) = µ is given by the ex-ante, required expected

return E[dQ j Ft] (which is the quantity the econometrician is interested in), plus two terms

which depend on the actual state µ. The …rst, Eµ[dQ¤ j Ft], is the same positive bias that is

realized even under risk-neutrality. The second, S0(¼)h(¼)Eµ[dv jFt] is an extra term which

is due to risk aversion. We …nd that if the state is µ = µ and ¼ > ¼̂ where ¼̂ is such that

S0(b¼) = 0, this is a positive term. Hence, if the state has been the normal one over the sample

period, the positive bias is higher than in the case of risk neutrality. The simulation results

will show the quantitative e¤ects of this bias in returns.

2.2. The “Peso Problem” and Return Volatility

In this subsection I investigate in more detail the process for the volatility ¾P ¤ (¼) = 1
r

µ
1 + µ¡µ

(¸+¹+r)¾h(¼)
¶

introduced in (2.2), under the assumption that µ(t) = µ.

Proposition 2.2: If µ(t) = µ and ¼(t) > 1
2 over the sample period, then:

d¾P¤ = a (¾P ¤)dt ¡ b (¾P ¤) d» (2.4)

where a (¾P ¤) and b (¾P ¤) are two explicit functions of ¾P ¤ , given in Appendix B. In addition,

b (¾P¤) > 0:

In (2.4) d¾P ¤ depends only on the past values of ¾P ¤ , through the two functions a (¾P ¤) and

b (¾P¤), given in the Appendix B and plotted in Figure 2 for calibrated parameters (see next

Section). Moreover, the stochastic element is given by the Wiener process »(t). Notice that

since b (¾P¤) > 0, the coe¢cient of d» is negative, as we would expect: under the assumption

that ¼ > 1
2 over the sample period, positive shocks to fundamentals decrease volatility while
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negative shocks increase it. In addition, the drift rate a (¾P¤) is positive for low ¾P¤ and

negative for high ¾P¤ ; implying a (non-linear) mean reverting process for volatility ¾P¤ .

Finally, ¾P¤ characterized in proposition 2.2 is the “risk-neutral” volatility. But risk aversion

implies that ¾P (¼) = ¾P ¤(¼)+S0(¼)h(¼) (see proposition 2.1 (b)), and thus a higher volatility

when ¼ > ¼̂ and lower when ¼ < ¼̂, where ¼̂ is such that S0 (¼̂) = 0. Since the “Peso problem”

hypothesis requires µ(t) = µ over the sample period, the relevant case is for ¼ very large. Hence,

we should expect to observe larger volatility than what is implied by proposition 2.2, but with

the same qualitative behavior; that is, it increases after negative shocks to fundamentals and

decreases after positive shocks.

2.3. The “Peso Problem” and the Survival of Markets

The above discussion is also related to Brown et al. (1995) and the literature on survival of

markets (see Goetzman and Jorion (1999a,b) ). Brown et al. (1995) investigate the ex post

statistical behavior of the time series of returns which have “survived” for a sample period

[0; T ]. They assume a simple di¤usion process for (log) prices and postulate that the market

does not survive if the price hits an absorbing lower bound. Under these assumptions, they

show that if the price series did not hit the lower bound, the implied time series of returns

should display many of the features actually observed in U.S. data series, including “puzzling”

risk premia and mean reversion. They also show that the bias in expected returns should

increase with return volatility, because the latter increases the probability of hitting the lower

bound. As an example, they often suggest that since emerging markets have highly volatile

stock returns, they should display abnormal excess returns if they survived ex post. Their

model, however, does not address the issue of the possible sources of return volatility.

My model o¤ers another explanation for the abnormal excess returns realized in emerging

markets, which is also consistent with the substantial volatility of market returns. In periods

of high uncertainty over the true state of the economy (which may include many factors, e.g.

political ones), investors react heavily to news, and therefore stock returns should be highly
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volatile. If ex post the market survived, it means that the state of the world has been the

favorable one over the sample period. Hence, proposition 2.1 applies and the expected returns

should be positive and substantial.

3. Monte Carlo Simulations

In this section I use Monte Carlo simulations to study the characteristic features of the present

model and compare them to the stylized facts of U.S. stock returns. The …rst step is to

calibrate some of the parameters under the null hypothesis that µ(t) = µ over the sample

period. These are µ, ¾ and the real interest rate r. We are subject to the di¢culty that I have

to assume a Gaussian dividend process for tractability reasons, whereas a log-normal process

would probably be more appropriate. Even though this is just a rough approximation, I will

use the mean and the standard deviation of dividend growth rates for µ and ¾, respectively.3

In addition, under the null hypothesis, no change in state ever occurred over the sample

period, which implies I need to choose a very small value for ¸. The choice ¸ = :005 implies

an expected time for a shift of about 200 years. If a downward shift occurs, I assume that

there is a µ = 5% average decrease in dividends for an expected time of 20 years (¹ = :05).

These choices make a downward shift quite dramatic and are meant to capture the sense of the

quotation in the introduction about the Peso problem that investors were facing during the

30’s. However dramatic a shift would be, notice that the unconditional probability to be in the

favorable state is around 0:91 and the unconditional expected µ is 0.009. Finally, the risk-free

real interest rate r has been chosen to be 3% which is slightly above to the historical mean

(less than 2%). This makes the estimates more conservative: low interest rates only amplify

the price sensitivity to changes in dividends and to changes in beliefs, because dividends in the

distant future have a greater weight in the determination of today’s price, and all the e¤ects

will be more pronounced. Table 1 report the parameter values in the calibration.
3Annual data on real dividends from 1871 to 2000 were used. The source is Campbell and Shiller (1988)

updated data series.
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Finally, to have a sense of the order of magnitude of the coe¢cient of relative risk aversion

implied by the assumptions made so far, Veronesi (1999, Proposition 3) shows that the value

function for the representative agent can be written as J (W; ¼) = ¡e°rWF (¼) for some func-

tion F (¼). Thus, the relative risk aversion is simply given by RRA = ¡WJ 00 (W;¼) =J 0 (W ) =

°rW = 0:03W . In this economy with one unit of the risky asset, we can think of investor’s

…nancial wealth being in the order of magnitude of the price of the asset. In all simulations the

price of the asset rarely exceeded the 100 level. Thus, we …nd that the coe¢cient of relative

risk aversion implied by this model is generally below 3.

Given the parameters in Table 1, I generate 500 independent samples for dividends D (t)

using the Euler discrete approximation of the process in equation (1.1). Each sample has 900

“monthly” observations (75 years) while each month contains 22 (daily) observations. From

the dividend observations I compute the posterior probabilities by approximating the process

in (1.2). Finally, I use the dividend and probability series to compute the prices P (D;¼) and

P ¤(D;¼) by using (1.3) and (1.4). All the other variables are computed from these latter time

series. Figures 3 shows the results of a particular sequence of dividends and probabilities,

together with the implied price values and return volatility levels, generated by the above

procedure.4

3.1. “GARCH” and Leverage E¤ects

In this subsection I …t the GARCH(1,1) model

¾2
t = ! + ¯¾2

t¡1 + ®´2t (3.1)

4The volatility is estimate as

¾2t =
20X

i=1

(ri;t ¡ ¹rt)2

where ri;t is the return in day i in month t, and ¹rt is the average monthly return.

12



where ´t » N (0; ¾t¡1), on each of the 500 samples simulated.5 Table 2 reports the distribution

of the three parameters across the simulation. For comparison, I also include the estimates

obtained using monthly data for excess returns from 1926:01-2001:12.6 The results of the

Monte Carlo simulation show that in average, the parameter estimates are almost identical to

the ones observed in the data. The autoregressive parameter ¯ equals a median .88 (mean =

.87) across simulations, against a .86 in the data. Similarly, the impact of news to volatility is

very similar, with ® = :12 in both cases. We can also notice that there is not much variation of

the parameter estimates across samples, showing that the “Garch e¤ect” is a genuine feature

of the model, and mainly due to the Peso-Problem situation, as modeled in this paper.

The “Peso problem” hypothesis is also interesting because it entails an e¤ect commonly

referred to as the “leverage e¤ect” (see Black (1976)), which is a negative relationship between

returns and future volatility. In the above model, the distribution of ¼ conditional on µ(t) = µ

is concentrated in the area close to 1. As discussed, this implies that when ¼ decreases, both

volatility increases and the price decreases. Hence, we should observe a negative correlation

between ex post returns and future volatility. This relationship between returns and future

volatility is observed in U.S. data. Black (1976) explained this phenomenon as stemming from

the increase in the debt-to-equity ratio of a leveraged …rm following a drop in its stock price.

The increase in the stock return volatility just re‡ects the increase in the riskiness of the

leveraged …rms. The model presented here provides an alternative explanation: both the price

and the volatility of the stock react after bad news because the underlying uncertainty over

the true state of the world increases.

In order to quantify this e¤ect, Table 3 reports the results of the Monte Carlo simulation

where an Exponential GARCH(1,1) model has been …tted on each of the 500 simulated samples.
5 In this model it could happen that prices become negative, thereby making it impossible to compute

percentage returns. For those simulated samples where this situation occured, I rescaled the dividend series to

ensure positive prices. A previous version of the paper used “dollar returns” rather than percentage returns,

which are free from this problem. The results were qualitatively similar, although harder to compare with the

US data.
6Data are from the CRSP tapes at the University of Chicago.
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The EGARCH(1,1) model is given by:

log(¾t) = ! + ¯ log(¾t¡1) + ®[j²tj ¡ c²t] (3.2)

Under the leverage e¤ect hypothesis, ®c should be positive, implying that negative inno-

vations have a greater impact on volatility than positive innovations. Moreover, c > 1 also

implies that while negative innovations tend to increase the volatility, positive innovations tend

to decrease it. As expected from equation (2.4), we see from Table 3 that the model implies an

asymmetric reaction of volatility to bad and good news, as c > 0. Indeed, the model produces

even “too much” of a leverage e¤ect, as the parameter c has a median equal to 1.48 across

simulations, while data yield the much smaller c = :22. Similarly, the autoregressive coe¢-

cient ¯ results higher in the simulation (.997) than in the data (0.97). This implies that the

volatility process implied by the model is more persistent than it is empirically observed. Still,

one can conclude from the results in Table 2 and 3 that the model produces a good deal of

time-variation in volatility, which is related with the directional movement in the stock market.

3.2. The small-sample bias in expected returns

This section discusses the quantitative implications of the Peso Problem for the estimated

average returns, the standard …nding in the Peso Problem literature (see e.g. Rietz (1988),

Danthine and Donaldson (1998)). To quantify the e¤ects, I will compare them to an alternative

model, where agents know exactly the state µ (t) = µ and no shifts are possible. In this and

the next section I will refer to this latter model as the Benchmark case, as it is the natural

alternative to the Peso-Problem situation discussed here. In addition, it is a special case of

the models by Wang (1993) and Campbell and Kyle (1993).

Table 4 shows the results of the Monte Carlo Simulations. From the …rst two columns, we

see that indeed the small sample bias increases the mean average returns from 0.77% for the

benchmark case, to above 3% for the Peso Problem, a four-fold increase. Although the latter

number is still half of the equity premium, it shows that the small sample bias can induce large
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e¤ects on the average return, as others have shown. The low value of the equity premium is

due to the fact that as discussed in Section 3, the calibrated parameters imply a coe¢cient of

relative risk aversion well below 3, thereby justifying also the very low equity premium in the

benchmark case.

3.3. Stock price sensitivity to dividend changes and excess volatility

The model presented in this paper adds also to the debate on stock price ‡uctuations in response

to dividend changes. In particular, starting with Shiller (1981) and LeRoy and Porter (1981),

many papers challenged the e¢cient market, present-value model hypothesis on the basis that

the stock price appeared to be too volatile, compared to ex post discounted dividends.7 Indeed,

by running a regression of monthly log-prices on log-dividends, we …nd the following:

log(Pt) = 3:0687 +1:1887 log(Dt)

(0:0443) (0:0386)
(3.3)

where standard errors are in parenthesis. This shows that a 1% change in dividend implies a

change in price greater than 1%. This empirical regularity has been addressed by Barsky and

De Long (1993), who only consider the long term case (around a 20 year time span). They

propose a simple model where this “overreaction” of prices to dividend ‡uctuations stems from

investors’ revision of their own estimate of the long-term dividend growth rate, which they use

to compute future dividends.

The model presented in this article gives a similar explanation to the excess sensitivity of

prices to dividend changes. In fact, from the price function given in equation (1.3) and (1.4),

we can see that a change in dividend has a direct and an indirect e¤ect on the price of the

asset: the direct e¤ect is through the term D
r and the indirect e¤ect is through the revision in

the probability ¼ that the change in dividend would entail. Depending on the sensitivity of ¼
7See e.g. Mankiw, Romer and Shapiro (1985,1991), Campbell and Shiller (1988), Shiller (1989). Marsh and

Merton (1986) o¤er an early reply to the concerns raised by Shiller (1981) and LeRoy and Porter (1981). See

also West (1988) for a survey and references.
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to news and the sensitivity of the price to changes in ¼ the indirect e¤ect may be substantial.

To have a comparison, the last two columns in Table 4 report the results of the Monte Carlo

simulation of the regression (3.3) both for the benchmark case, and the peso-problem case. In

short, while the benchmark case yield a sensitivity parameter very close to 1, thereby justifying

the concerns of the early literature started by Shiller (1981) and LeRoy and Porter (1981), the

peso-problem e¤ects are strong enough to generate a substantial excess sensitivity of price

changes to dividend changes. The mean elasticity is about 2, which is quite higher than the

one found empirically, but it con…rms nonetheless that the “double kick” to prices stemming

from learning and the Peso-Problem hypothesis can yield the e¤ect.

To quantify the magnitude of the excess sensitivity of price reactions to dividend news,

the second two columns of Table 4 show that the average volatility in the benchmark case

is a small 6.5%, as the only volatility is stemming from changes in dividends, which are not

very volatile (in sample, 6.5% was also the average volatility of dividend growth). In the Peso

Problem Situation, instead, the average volatility in the simulations is around 21%. Thus,

learning e¤ects can have important e¤ects on the level of the volatility of returns, as was …rst

discussed by Timmerman (1993). The simulations in addition show that these learning e¤ects

have a rather strong impact on the volatility, even when the probability of entering into a

(10-year) long recession is puny, about once every 200 years. Indeed, in this model even small

movements in the updated probability of being in a recession are ampli…ed by the fast increase

in the discount when the probability ¼ decreases, as shown in Figure 1.

4. Conclusion

This paper shows that the “Peso Problem Hypothesis” on economic fundamentals has several

implications that have not previously documented. Speci…cally, I show that (i) returns should

have GARCH behavior; (ii) there should be a negative predictive asymmetry between returns

and future volatility; (iii) return volatility should increase during recessions; (iv) the time

series of returns should have an upward bias due to small sample; and (v) price sensitivity to
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dividend changes should be greater than the one implied by standard present value models. In

addition, Monte Carlo simulations show that the magnitude of the e¤ects are comparable to

those observed in the US data.

A concluding remark is in order: This paper shows theoretically that a “Peso Problem

situation” generates a time-varying volatility with the same characteristics as the one in the

data, and in particular with negative news that have a higher impact on the volatility than

positive news. This is in line with the quote by Merton in the Introduction about the high

volatility in the 30s. Yet, this of course does not imply that all “Garch e¤ects” that we

see in the data must be due to a Peso Problem situation. Other sources could be at play,

possibly also related to uncertainty. Nonetheless, the contribution of this paper is to show

that a Peso Problem situation would tend to generate simultaneously a number of features in

returns, namely, e¤ects (i) - (v) above, which are somewhat established feature of the data in

“surviving” economies, as discussed in Section 2.3.

Appendix A

The two di¤erential equations appearing in proposition 1.1 and 2.1 are the following:

¡f 00(¼)Q3(¼) + f 0(¼)2Q3(¼) + f 0(¼)Q2(¼) + f(¼)r + Q0(¼) = 0 (4.1)

where Q3 = h(¼)2
2 , Q2 = h(¼)¾° ¡ (¼s ¡ ¼)(¸ + ¹) + °rp¼h(¼)2 and Q0 = (r°)2

2 p2¼h(¼)2 +

r°2¾p¼h(¼):

S00(¼)P3(¼) = S0(¼)P2(¼) + rS(¼) + P0(¼) (4.2)

where P3(¼) = h(¼)2=2; P2(¼) = °¾h(¼) ¡ (¼s ¡ ¼)(¸ + ¹) + °rp¼h(¼)2 + f 0(¼)h(¼)2and

P0(¼) = °rp2¼h(¼)2 + 2°¾p¼h(¼) + f 0(¼)¾r h(¼) + f 0(¼)p¼h(¼)2.
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Appendix B

Proof of Proposition 2.1: (a) By de…nition, for µ(t) = µ we have that:

E(dQ¤jFt; µ)=dt = (D ¡ rP ¤) + E(dP ¤jFt; µ; ¼)

We can substitute the de…nition of P ¤, to obtain (after some tedious algebraic manipulations):

E(dQ¤jFt; µ)=dt =
µ ¡ µ

r
¡ ¢µ

r
¼ +

¢µ
r(¸ + ¹ + r)

h(¼)E(dvjFt; µ; ¼)

Notice that dv is a Wiener process with respect to Ft, but it is not with respect to Ft [ µ.

In fact, we have E(dvjFt; µ; ¼) = ¢µ
¾ (1 ¡ ¼): By substituting this in the above expression, we

prove the claim.

(b) By de…nition, E[dQ jFt; µ] = (D ¡ rP )dt + E[dP jFt; µ]. By substituting for P (D;¼),

we obtain:

E[dQ jFt; µ] = (D ¡ rP ¤)dt + (¡rp0 ¡ rS(¼))dt + E[dP ¤ jFt; µ] + S0(¼)E[d¼ jFt; µ]

+
1
2
S00(¼)E[(d¼)2Ft; µ]

= E[dQ¤ jFt; µ] + (¡rp0 ¡ rS(¼) + S0(¼)(¼s ¡ ¼)(¸ + ¹) +
1
2
S00(¼)h(¼)2)dt

+S0(¼)h(¼)E(dv jFt; µ)

We now substitute E(dv jFt; µ) = ¢µ
¾ (1 ¡ ¼) and from Veronesi (1999) (appendix A) we also

have:

¡rp0 ¡rS(¼)+S0(¼)(¼s¡¼)(¸+¹)+
1
2
S00(¼)h(¼)2 = (f 0(¼)¡°rS0(¼))h(¼)¾P (¼)+°r¾P (¼)2

(4.3)

We see that by using the de…nition of ¾P (¼), we can rewrite the RHS as ¾P (¼)(°¾ + (°rp¼ +

f 0(¼))h(¼)) = E[dQ jFt]. Hence, by substituting all this back we obtain:

E[dQ jFt; µ] = E[dQ¤ jFt; µ] + E[dQ jFt] + S0(¼)h(¼)E[dv jFtµ]

=
¢µ
r

(1 ¡ ¼)(¾P (¼) ¡ S0(¼)h(¼)) + (°¾ + (°rp¼ + f 0(¼))h(¼))¾P (¼)dt

+S0(¼)h(¼)
¢µ
¾

(1 ¡ ¼)dt

=
µ
°¾ + (°rp¼ + f 0(¼))h(¼) +

¢µ
r

(1 ¡ ¼)
¶

¾P (¼)dt
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concluding the proof. 2

Proof of Proposition 2.2: We show that if µ(t) = µ and ¼ > 1
2 during the sample period,

we have:

d¾P¤ = [¡a0 + a1
p

1 + s0 ¡ s1¾P¤ + a2¾P ¤ ¡ a3¾2
P¤ ¡ a4¾P ¤

p
1 + s0 ¡ s1¾P¤ ]dt

¡¢µ
2¾

(¾P ¤ ¡ ¾
r
)
p

1 + s0 ¡ s1¾P ¤d»

where, de…ning ~p = (µ¡µ)2
¾r(¸+¹+r) , s0 = 4 ¾r~p¼ , s1 = 4

~p¼ , a0 = (¢µ)2
2¾(¸+¹+r) + 3¾ + ¾(¸+¹)

r , a1 =
(2¸+r)(¢µ)2
2¾r(¸+¹+r) , a2 = (¢µ)2

2¾2 + 6r + 4(¸ + ¹), a3 = 3r(¸+¹+r)
¾ and a4 = (¢µ)2

2¾2 .

Use the de…nition of dv in Lemma 1.1 with dD = µdt+¾d» to obtain dv = 1
¾¢µ(1¡¼)dt+d»:

This can be substituted into the process for d¾P ¤ obtained by Ito’s Lemma to ¾P¤ (¼) =
1
r

µ
1 + µ¡µ

(¸+¹+r)¾h(¼)
¶

to obtain:

d¾P¤(¼) = ~p¼[(1 ¡ 2¼)(¼s ¡ ¼)(¸ + ¹) ¡ h(¼)2]dt (4.4)

+~p¼(1 ¡ 2¼)h(¼)
¢µ
¾

(1 ¡ ¼)dt + ~p¼(1 ¡ 2¼)h(¼)d»

Since ¾P ¤ = ¾
r +p¼h (¼) implies the relation ¾P ¤ ¡ ¾r ¡ ~p¼¼ + ~p¼¼2 = 0. Under the assumption

that ¼ > 1
2 , we obtain a solution of ¼ in terms of ¾¤P , given by ¼ = 1

2 + 1
2
p

1 + s0 ¡ s1¾P¤ . By

substituting for ¼, h(¼) and h(¼)2 in (4.4), tedious algebraic manipulations show the claim. 2
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Table 1

Calibration

µ µ ¾ r ° ¸ ¹

.015 –.05 .12 .03 1 .005 .05

Table 2

GARCH E¤ects

U.S. Stock Market

! (£103) ¯ ®

estimate 0.0685 0.8588 0.1205

asymptotic s.e. (0.0153) (0.0183) (0.0212)

Monte Carlo Simulations

! (£103) ¯ ®

mean 0.0322 0.8723 0.1239

sd 0.0474 0.0414 0.0471

min 0.0004 0.697 0.0486

5% 0.0028 0.789 0.0713

25% 0.0086 0.8526 0.0927

50% 0.018 0.883 0.1132

75% 0.0364 0.9007 0.1417

95% 0.1096 0.9225 0.215

max 0.6496 0.943 0.3511

GARCH Model:

¾2t = ! + ¯¾2t¡1 + ®´2t

´t = (rt ¡ ¹r) » N (0; ¾t¡1)
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Table 3

The Leverage E¤ect

U.S. Stock Market

! ¯ ® c

estimate -0.1646 0.9740 0.1109 0.2689

asymptotic s.e. (0.0130) (0.0048) (0.0143) (0.0947)

Monte Carlo Simulations

! ¯ ® c

mean -0.0485 0.997 0.0453 4.2742

sd 0.0296 0.0037 0.0277 10.6926

min -0.2149 0.9726 0.0005 -0.0352

5% -0.1003 0.9903 0.0041 0.4441

25% -0.0661 0.9957 0.0229 0.9212

50% -0.0448 0.998 0.0426 1.4888

75% -0.0257 0.999 0.0637 2.8508

95% -0.0079 1.000 0.0945 20.0874

max -0.0029 1.000 0.1581 137.853

EGARCH(1,1) Model:

log(¾t) = ! + ¯ log(¾t¡1) + ®[j²tj ¡ c²t]

²t = ´t
¾t¡1

, ´t = (rt ¡ ¹r) » N (0; ¾t¡1)
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Table 4

Small Sample Bias and Excess Volatility

US Stock Market

Average Returns Average Volatility Price Sensitivity

6.45% 19.66% 1.1887

Monte Carlo Simulations

Average Returns Average Volatility Price Sensitivity

Benchmark Peso Benchmark Peso Benchmark Peso

mean 0.0076 0.0313 0.0658 0.2207 1.0255 2.0147

sd 0.0071 0.0126 0.0107 0.0951 0.0042 0.4280

min -0.0109 -0.0055 0.0417 0.0872 1.0154 1.3612

5% -0.0037 0.0101 0.0495 0.1251 1.0194 1.4834

25% 0.0023 0.0222 0.0582 0.1584 1.0226 1.6616

50% 0.0075 0.0307 0.0648 0.1893 1.0251 1.9056

75% 0.0127 0.0416 0.0724 0.2516 1.0282 2.2832

95% 0.0194 0.0516 0.0845 0.4138 1.0334 2.8765

max 0.0243 0.065 0.105 0.7182 1.0405 3.3375

Average return and average volatility are given by the time-series annualized mean and standard

deviation of log-returns in the US sample 1926 - 2001, and in simulated data. The price-sensitivity

refers to the slope coe¢cient of the regression log(Pt)= ® + ¯ log (Dt) + ²t in the data and

in simulations. The benchmark model is the one where dividend growth is …xed and known to

investors, while the Peso column refers to the e¤ect of the Peso problem situation.
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Figure 1: (A) The function S(π). (B) The risk-neutral price 
P*(D,π) and the price function P(D,π) 
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Figure 2: (A) The drift a(σP∗)  of the volatility process. (B) 
The diffusion b(σP∗) of the volatility process. 
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Figure 3: (A) A simulated dividend series; (B) The updated  
probability π; (C) The implies prices P(D,π) and P(D,θ);  
(D) The estimated monthly volatility : σP and σP,θ. 
 

 
 

 


