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Abstract

Empirical evidence shows that conditional market betas vary substantially over time.

Yet, little is known about the source of this variation, either theoretically or empirically.

Within a general equilibrium model with multiple assets and a time varying aggregate

equity premium, we show that conditional betas depend on (a) the level of the aggregate

premium itself; (b) the level of the firm’s expected dividend growth; and (c) the firm’s

fundamental risk, that is, the one pertaining to the covariation of the firm’s cash-flows

with the aggregate economy. Especially when fundamental risk (c) is strong, the model

predicts that market betas should display a large time variation, that their cross-sectional

dispersion should be negatively related to the aggregate premium, and that investments

in physical capital should be positively related to changes in betas. These predictions find

considerable support in the data.

∗We thank seminar participants at University of Texas at Austin, NYU, University of Illinois at Urbana-

Champaign, McGill, MIT, Columbia University, and the University of Chicago. We also thank John Cochrane,

George Constantinides, Lars Hansen, John Heaton, Martin Lettau, Lior Menzly, Toby Moskowitz, Monika

Piazzesi, and Jessica Wachter for their comments. We thank Arthur Korteweg for outstanding research assis-

tance. Some of the results in this paper were contained in a previous version entitled “The Time Series of the

Cross-Section of Asset Prices.”



I. INTRODUCTION

A firm’s decision to take on a new investment project depends on whether the discounted

value of future payouts from the project exceeds the direct current investment cost. To this

day, the standard textbook recommendation is to appeal to the CAPM to compute the cost

of equity: The rate used to discount future cash-flows should be proportional to the excess

return on the market portfolio, where the proportionality factor is the market beta. The task

of estimating the cost of equity though is complicated because there is substantial empirical

evidence showing that both the market premium and individual assets’ betas fluctuate over

time.1 There are many theoretical explanations for the time series variation in the aggregate

premium but the same cannot be said of fluctuations in betas.2 Why and how do betas move?

How do they depend on the characteristics of the cash-flows that the firm promises to its

investors? How do betas correlate with the aggregate premium? How do they correlate with

investments in physical capital?

In this paper we answer these questions within a general equilibrium model where both

the aggregate equity premium and the expected dividend growth of individual securities are

time varying. We show that conditional betas depend on (a) the level of the aggregate premium

itself; (b) the level of the firm’s expected dividend growth; and (c) the firm’s fundamental

risk, that is, the one pertaining to the covariation of the firm’s cash-flows with the aggregate

economy. This characterization yields novel predictions for the time variation of conditional

betas as well as their relation with investments in physical capital. Specifically, when the firm’s

cash-flow risk (c) is substantial, the model predicts that conditional betas should display a large

time variation, that their cross sectional dispersion is high when the aggregate equity premium

is low, and that capital investment growth should be positively related to changes in betas.

These predictions are met with considerable support in the data
1On time-varying betas see Bollerslev, Engle, and Wooldridge (1988), Braun, Nelson, and Sunier (1995),

Bodhurta and Mark (1991), Campbell (1987), Chan (1988), Evans (1994), Ferson (1989), Ferson and Harvey

(1991, 1993), Fama and French (1997), Harvey (1989), and more recently, Franzoni (2001), Lettau and Ludvigson

(2001b), and Lewellen and Nagel (2003). On the fluctuations of market premia, see Ang and Beckaert (2002),

Campbell and Shiller (1988), Fama and French (1988,1989), Goyal and Welch (2003), Hodrick (1992), Keim

and Stambaugh (1986), Lamont (1998), Lettau and Ludvigson (2001a), Menzly, Santos and Veronesi (2004),

and Santos and Veronesi (2003).
2On time varying equity premium, see Campbell and Cochrane (1999), Barberis, Huang, and Santos (2001),

Veronesi (2000) and Santos and Veronesi (2003). On time varying betas, see Berk, Green and Naik (1999) and

Gomes, Kogan and Zhang (2003).

1



To grasp intuitively the results in this paper, consider first an asset that has little cash-

flow risk, that is, an asset for which cash-flows have little correlation with the “ups and downs”

of the economy, see (c) above. In this case, the risk-return trade-off is only determined by the

timing of cash-flows, that is by the duration of the asset. As in the case of fixed income

securities, the price of an asset that pays far in the future is more sensitive to fluctuations

in the aggregate discount rate than an otherwise identical asset paying relatively more today.

Clearly, return volatility due to shocks to the aggregate discount rate is systematic. As a

consequence, the asset is riskier and thus its beta is higher the longer its duration.

This intuition though does not hold if the asset has substantial cash-flow risk. Indeed,

consider now the case of an asset whose cash-flow growth is highly correlated with the growth

rate of the aggregate economy. Furthermore, assume as well that the asset has a low duration,

that is, it pays relatively more today than in the future. In this case, the total value of this

asset is mainly determined by the current level of cash-flows, rather those in the future. The

price of the asset is then mostly driven by cash-flow shocks and the fundamental risk embedded

in these cash-flows drives also the risk of the asset. Thus, when cash-flows display substantial

fundamental risk, the conditional market beta is higher when the duration is lower. If instead

the asset has high duration, current cash-flows matter less and the asset becomes less risky.

These findings highlight a tension between “discount effects” (high risk when the asset

has a high duration) and “cash-flow risk effects” (high risk when the asset has low duration.)

This tension has deep implications for the behavior of the cross section of risk as a function

of fluctuations in the aggregate equity premium. Assume first that cash-flow risk effects are

negligible compared to discount effects. Then the cross sectional dispersion of conditional betas

moves together with the aggregate equity premium: It is low (high) when the aggregate equity

premium is low (high). Intuitively, when the aggregate equity premium is low, individual asset

prices are determined by the average growth rate of its cash flows over the long run. Given

some mean reversion in expected dividend growth – a necessary condition if no asset is to

dominate the economy – this implies that the current level of expected dividend growth is not

important in determining prices. In this case, assets’ prices have similar sensitivities to changes

in the stochastic discount factor and hence have similar market betas as well. Thus when the

equity premium is low so is the dispersion in betas. Instead, when the market premium is high,

differences in current expected dividend growth matter more in determining the differences in

value of the asset. This results in a wide dispersion of price sensitivity to changes in the

stochastic discount factor and hence more dispersed betas.
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In contrast if cash-flow risk is a key determinant of the dynamics of conditional betas

low discount rates lead to an increase in the dispersion of betas. Assets with high cash-flow

risk have a component of their systematic volatility that is rather insensitive to changes in the

discount rate. However, since a low aggregate discount rate (i.e. good times) tends to yield a

low volatility of the market portfolio itself, the relative risk of the individual asset with high

cash-flow risk increases, and therefore so does its beta.

Finally we link the fluctuations in market betas to fluctuations in investment. To do so

we propose a simple model of firm investment behavior where the standard textbook NPV rule

holds. According to this rule, investments occur whenever market valuations are high, which

happens when the aggregate risk premium is low, or when the industry is paying relatively

high dividends compared to the future, or both. The relation between investment growth and

changes in betas is now clear. If cash flow risk is negligible, a decrease in the aggregate equity

premium or an increase in current dividend payouts result in a lower conditional beta, as

already discussed. Thus a negative relation between changes in betas and investment growth

obtains. Instead, when cash-flow risk dominates the risk return trade-off of the asset, there is

a positive relation between changes in betas and investment growth. The reason is that now

the beta of a low duration asset increases as the aggregate discount decreases.

These observations produce simple empirical tests to gauge the size of discount effects

relative to cash-flow effects in determining the dynamics of conditional betas. Empirically, we

find that the dispersion of industry conditional betas is high when the market price dividend

ratio is high, which in turn occurs when the aggregate market premium is low (e.g. Campbell

and Shiller (1989)), confirming that cross sectional differences in cash-flow risk must be large.

Similarly, we find that investments growth is higher for industries that experienced increases

in their market betas, as well as declines in their expected dividend growth, consistently again

with the model and the presence of a significant cross sectional differences in cash-flow risk.

Monte Carlo simulations of our theoretical model yield the same conclusion: When cash-

flow risk is small and only discount effects matter, the model-implied conditional betas show

little variation over time, unlike what is observed in the data. In contrast, when we allow

for substantial cash-flow risk our simulations produce fluctuations in conditional betas and

investment growth that match well their empirical counterparts.

We obtain our results within the convenient general equilibrium model of Menzly, Santos

and Veronesi (2004) – henceforth MSV. This paper, however, differs substantially from MSV,

which focused exclusively on the time series predictability of dividend growth and stock returns
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for both the market and individual portfolios. The present paper is instead concerned with

the equilibrium dynamic properties of the conditional risk embedded in individual securities,

a key variable for the computation of the cost of equity and thus for the decisions to raise

capital for new investments. As discussed, we fully characterize conditional betas as a function

of fundamentals and the aggregate market premium, and obtain numerous novel predictions

about their dynamics and their relation to investments in physical capital. This paper is also

related to Campbell and Mei (1993), Vuolteenaho (2002), and Campbell and Vuolteenaho

(2002), who also investigate the relative importance of shocks to cash flows and shocks to the

aggregate discount in determining the cross-section of stock returns and market betas. These

papers though focus on unconditional betas while we emphasize the dynamic aspect of betas.

This paper relates as well to the recent literature on the ability of the conditional CAPM

to address the asset pricing puzzles in the cross section.3 Typically, researchers assume ad-hoc

formulations of betas and, in addition, little effort is taken to quantify the magnitude of the

variation in betas needed to resolve the puzzles.4 In contrast, in this paper we obtain the

market betas within an equilibrium model that successfully reproduces the variation of the

aggregate risk premium, as well as the variation in expected dividend growth of individual

assets. Our characterization of betas allows us to quantify the magnitude of their variation at

the industry level and yields several interesting insights about expected returns: For instance,

it is not surprising that industry portfolios have little differences in unconditional expected

returns, notwithstanding large differences in conditional betas. In fact, consistently with the

model, our empirical results show that the dispersion of betas is high when the aggregate equity

premium is low, and viceversa, which imply a little dispersion in expected returns in average.

The paper develops as follows. Section II contains a brief summary of the MSV model.

Section III contains the theoretical results. In Section IV we propose a simple model of invest-

ment and link the fluctuations in betas to changes in investments. Section V offers empirical

tests as well as simulations of the many implications of the model. Section VI concludes. All

proofs are contained in the Appendix.

3See e.g. Jagannathan and Wang (1996), Lettau and Ludvigson (2001b), Santos and Veronesi (2001), Fran-

zoni (2001).
4Lewellen and Nagel (2003) is a noteworthy exception.
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II. THE MODEL

II.A Preferences

There is a representative investor who maximizes

E

[∫ ∞

0
u (Ct, Xt, t) dt

]
= E

[∫ ∞

0
e−ρt log (Ct − Xt) dt

]
, (1)

where Xt denotes an external habit level and ρ denotes the subjective discount rate.5 In

this framework, as advanced by Campbell and Cochrane (1999), the fundamental state vari-

able driving the attitudes towards risk is the surplus consumption ratio, St = (Ct − Xt) /Ct.

Movements of this surplus produce fluctuations of the local curvature of the utility function,

Yt = −uCC

uC
Ct =

1
St

=
Ct

Ct − Xt
=

1

1 −
(

Xt
Ct

) > 1, (2)

which translate into the corresponding variation on the prices and returns of financial as-

sets. MSV assume that the inverse of the surplus consumption ratio, or inverse surplus for

short, Yt, follows a mean reverting process, perfectly negatively correlated with innovations in

consumption growth

dYt = k
(
Y − Yt

)
dt − α (Yt − λ) (dct − Et [dct]) , (3)

where λ ≥ 1 is a lower bound for the inverse surplus, and an upper bound for the surplus itself,

Y > λ is the long run mean of the inverse surplus and k is the speed of the mean reversion.

Here ct = log (Ct) and we assume that it can be well approximated by the process:

dct = µcdt + σcdB1
t , (4)

where µc is the mean consumption growth, possibly time varying, σc > 0 is a scalar, and B1
t is

a standard Brownian motion. Given (3) and (4) then, we assume that the parameter α in (3)

is positive (α > 0), so that a negative innovation in consumption growth, for example, results

in an increase in the inverse surplus, or, equivalently, a decrease in the surplus level, capturing

the intuition that the consumption level Ct moves further away from a slow moving habit Xt.6

5On habit persistence and asset pricing see Sundaresan (1989), Constantinides (1990), Abel (1990), Ferson

and Constantinides (1991), Detemple and Zapatero (1991), Daniel and Marshall (1997), Campbell and Cochrane

(1999), Li (2001), and Wachter (2000). These papers though only deal with the time series properties of the

market portfolio and have no implications for the risk and return properties of individual securities.
6MSV show that α ≤ α (λ) = (2λ − 1) + 2

√
λ (λ − 1) is needed in order to ensure that covt (dCt, dXt) > 0

for all St, as economic intuition would have it.
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II.B The cash-flow model

There are n risky financial assets paying a dividend rate,
{
Di

t

}n

i=1
, in units of a homoge-

neous and perishable consumption good. Agents total income is made up of these n cash-flows,

plus other proceeds such as labor income and government transfers. Denoting by D0
t the ag-

gregate income flow that is not financial in nature, standard equilibrium restrictions require

Ct =
∑n

i=0 Di
t. Define the share of consumption that each asset produces,

si
t =

Di
t

Ct
. (5)

Then MSV assume that si
t evolves according to a mean reverting process of the form

dsi
t = φi

(
si − si

t

)
dt + si

tσ
i (st) dB′

t, for each i = 1, ..., n. (6)

In (6) Bt =
(
B1

t , ..., BN
t

)
is a N -dimensional row vector of standard Brownian motions, si ∈

[0, 1) is the average long-term consumption share, φi is the speed of mean reversion, and

σi (st) = vi −
n∑

j=0

sj
tv

j = [σi
1 (st) , σi

2 (st) , · · · , σi
N (st)] (7)

is a N dimensional row vector of volatilities, with vi for i = 0, 1, · · · , n a row vector of constants

with N ≤ n + 1.7

The share process described in (6) has a number of reasonable properties. First, the

functional form of the volatility term (7) arises for any homoskedastic dividend growth model.

That is, denoting by δi
t = log

(
Di

t

)
, (7) is consistent with any model of the form, dδi

t =

µi (Dt) dt + vidB′
t, as it is immediate to verify by applying Ito’s Lemma to the quantity

si
t = Di

t/(
∑n

j=0 Dj
t ). Second, the assumption that the share si

t is mean reverting ensures that

no asset will ever dominate the whole economy, as it appears ex-ante reasonable. Third, under

the conditions
∑n

i=1 si < 1 and φi >
∑n

j=1 sjφj, dividends are positive and total income equals

total consumption at all times.

In this framework the relative share, si/si
t, stands as a proxy for the asset’s duration.

When the relative share is high (low) the assets pays relatively more (less) as a fraction of

total consumption in the future than it does presently and then we say that the asset has a

high (low) duration. Clearly, high duration assets are also those that experience high dividend

growth. Indeed, an application of Ito’s Lemma to δi
t = log

(
Di

t

)
yields

7The process for the alternative source of income, s0
t , follows immediately from the fact that 1 −∑n

i=1 si
t.
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dδi
t = µi

D (st) dt + σi
D (st) dB′

t,

where

µi
D (st) = µc + φi

(
si

si
t

− 1
)
− 1

2
σi (st)σi (st)

′ , (8)

σi
D (st) = σc + σi (st) . (9)

and σc = (σc, 0, ..., 0).8 Notice that the volatility of the share process, σi (st) , is parametrically

indeterminate, that is, adding a constant vector to all vi’s leaves the share processes unaltered.

A convenient parametrization is then to rescale the vector of constants vi’s, for i = 0, 1, ..., n

so that
n∑

j=0

sjvj = 0. (10)

Finally the model offers a simple characterization of the fundamental measure of an

asset’s risk, the covariation of the growth rate of its cash-flows with consumption growth,

covt

(
dδi

t, dct

)
= σ2

c + θi
CF −

n∑
j=0

sj
tθ

j
CF where θi

CF = vi
1σc. (11)

The normalization in (10) implies that the unconditionally E
[
covt

(
dδi

t, dct

)]
= σ2

c + θi
CF ,

as
∑n

j=0 sjθi
CF = 0. Thus, the parameter θi

CF determines the unconditional cross sectional

differences of cash-flow risks across the various assets.9

III. CONDITIONAL BETAS

III.A Preliminaries

In the absence of any frictions the price of asset i is given by:

P i
t = Et

[∫ ∞

t
e−ρ(τ−t)

(
uc (Cτ − Xτ )
uc (Ct − Xt)

)
Di

τdτ

]
=

Ct

Yt
Et

[∫ ∞

t
e−ρ(τ−t)si

τYτdτ

]
, (12)

where Di
τ = si

τCτ . Notice that for the total wealth portfolio, the claim to total consumption,

si
τ = 1 for all τ . In this case a complete characterization of the price and return process is

possible and they are given by

PTW
t

Ct
= ΦTW (St) =

1
ρ + k

[
1 +

kY

ρ
St

]
(13)

8MSV find substantial empirical support for both the fact that dividends and consumption are cointegrated,

and that the relative share si/si
t predicts future dividend growth, as (8) implies.

91 + θi
CF /σ2

c can then be taken to be the unconditional cash-flow beta of asset i, the covariance of dividend

growth with consumption growth divided by the variance of consumption growth.
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and dRTW
t = µTW

R (St) dt + σTW
R (St) dB1,t, where

µTW
R (St) = (1 + α (1 − λSt))σTW

R (St)σc (14)

σTW
R (St) =

[
1 +

kY St (1 − λSt)α

kY St + ρ

]
σc. (15)

Equation (13) shows that price of the total wealth portfolio is increasing in the surplus

consumption ratio. Roughly, if the surplus consumption ratio is high the degree of risk aversion

is low and thus the high price of the total wealth portfolio. As for µTW
R (St) and σTW

R (St) they

are both decreasing in St for high values of St, as the intuition would have it. However, they

are increasing in St for very low values of St. The reason is that since St ∈ (0, 1/λ) , the

volatility of St must vanish as St → 0. This translates in a lower volatility of returns, and,

hence, in a decrease in expected returns as well.10

As for individual securities, assume first that their prices can be written as:

P i
t

Di
t

= Φi

(
St,

si

si
t

)
(16)

Equation (16) can be intuitively understood appealing to the traditional Gordon model. Here

St is the main variable determining movements in the aggregate discount rate, whereas si/si
t,

stands for the dividend growth of asset i, as shown in equation (8). In other words, we expect

Φi
(
St, s

i/si
t

)
to be increasing in both St and si/si

t. Below we provide closed form solutions for

Φi
(
St, s

i/si
t

)
and confirm these intuitions. However, much can be said about conditional betas

without making any additional assumptions once we assume that the price dividend ratio can

be written as in (16).

Proposition 1: Let the price function be given by (16). Then, (a) the process for returns is

given by

dRi
t = µi

R,tdt + σi
1,R,tdB1,t +

n∑
j=2

σi
j,R,tdBj,t (17)

where the loadings to the systematic and idiosyncratic shocks are, respectively,

σi
1,R,t

(
St, s

i
t

)
= σc +

(
∂P i

t /P i
t

∂St/St

)
σS (St) σc +

(
∂P i

t /P i
t

∂si
t/si

t

)
σi

1 (st) ; (18)

σi
j,R,t

(
St, s

i
t

)
=
[
1 +
(

∂P i
t /P i

t

∂si
t/si

t

)]
σi

j (st) ;

and σi
1 (st) and σi

j (st) are given in (7) and σS (St) = α (1 − λSt) is the time varying

component of the volatility of the surplus consumption ratio dSt/St.
10For a plot of µTW

R (St) and σTW
R (St) the reader can turn to Figure 1 in MSV.
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(b) The CAPM beta with respect to the total wealth portfolio can be written as,

βi
(
St, s

i/si
t, st

)
=

covt

(
dRi

t, dRTW
t

)
vart

(
dRTW

t

) = βi
DISC

(
St, s

i/si
t

)
+ βi

CF

(
St, s

i/si
t, st

)
(19)

where

βi
DISC

(
St, s

i/si
t

)
=

1 +
(

∂P i/P i

∂St/St

)
σS (St)

1 +
(

∂PTW /PTW

∂St/St

)
σS (St)

; (20)

βi
CF

(
St, s

i/si
t, st

)
=

(
∂P i/P i

∂si
t/si

t

)(
θi
CF −∑n

j=0 sj
tθ

j
CF

)
1 +
(

∂PTW /PTW

∂St/St

)
σS (St)

(
1
σ2

c

)
(21)

Consider first part (a) of the proposition. As it intuitively follows from (16), consumption

shocks, dB1
t , affect returns through three channels: (i) the impact on the dividend of the asset

Di
t = si

tCt; (ii) the impact on the surplus consumption ratio St, which only loads on dB1
t ; and

(iii) the impact on the share si
t, that is, the relative share si/si

t.

Part (b) of Proposition 2 now follows naturally from part (a). The CAPM beta has two

components to it. The first one captures the component of the covariance that is driven by

shocks to the discount factor, and, logically, we refer to it as the “discount beta.” It depends

on the sensitivity of the price of the asset to shocks in the surplus consumption ratio, ∂P i/P i

∂St/St
.

If this elasticity is higher than that of the total wealth portfolio, ∂PTW /PTW

∂St/St
, the asset is riskier

on this account than the total wealth portfolio and thus it has a higher discount beta.

The second component of the return beta is driven by asset’s cash-flow shocks and for

this reason we refer to it as the “cash-flow beta.” It depends on the elasticity of prices to shocks

in shares, ∂P i/P i

∂si
t/si

t
. Of course, only the component of the shock that covaries with consumption

is relevant for pricing and for this reason the expression for the cash-flow beta includes the

covariance of dsi
t/si

t with consumption growth itself:

covt

(
dsi

t/si
t, dct

)
= θi

CF −
n∑

j=0

sj
tθ

j
CF , (22)

where we recall that θi
CF is the parameter that regulates the unconditional covariance between

consumption growth and dividend growth, as defined in (11). This component then is driven

by the covariance of the cash-flows of asset i with consumption, and hence with the stochastic

discount factor.11

11Campbell and Vuolteenaho (2002) refer to the “cash flow beta” as bad beta and the discount beta as “good.”

Our terminology is closer to that of Campbell and Mei (1996)
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The results in Proposition 1 are generic. They rest on assuming that the price dividend

ratio can be written as in (16). We show next that this is indeed the case for the two polar

cases where either cash-flow effects or discount effects are assumed away. For the general case

we show that equation (16) is a very accurate approximation so that the intuitions built in

Proposition 1 remain.

III.B The discount beta

To asses the impact of the variation in the discount factor on the cross section of stock

prices and returns, we shut down the cross sectional differences in unconditional cash-flow risk,

that is, we set θi
CF = 0 for all i = 1, .., n in (11). The next proposition characterizes prices and

betas in this case. Part (a) is shown in MSV, and it is reported for completeness:

Proposition 2. Let θi
CF = 0 for all i = 1, .., n. Then, (a) the price dividend ratio of asset i,

is given by

P i
t

Di
t

= Φi
(
St, s

i/si
t

) ≡ (ai
0 + ai

1Y kSt

) (si

si
t

)
+
(
ai + ai

2Y kSt

)
(23)

where ai =
(
ρ + k + φi

)−1, ai
0 = aiφi (ρ + k)−1, ai

1 = ai
0

(
2ρ + k + φi

)
/
(
ρ
(
ρ + φi

))
and

ai
2 = ai

(
ρ + φi

)−1
.

(b) The CAPM beta is given by

βi
DISC

(
St, s

i/si
t

)
=

1 + kY St

kY St+ρf(si/si
t)

σS (St)

1 + kY St

kY St+ρ
σS (St)

, (24)

where f (·) is such that f ′ < 0 and f (1) = 1 and it is given explicitly by equation (37)

in the Appendix.

Equation (23) shows that asset i’s price dividend ratio is increasing in both si/si
t and

St. This is intuitive: As shown in (8), si/si
t is positively associated with the asset’s dividend

growth, whereas St is negatively associated with the aggregate discount (see equation (14)).

Part (b) of Proposition 2 characterizes the CAPM beta in the case where there are only

discount effects. Since f (1) = 1 and f ′ (si/si
t

)
< 0, for any level of the surplus consumption

ratio, high duration assets, that is, those with si/si
t > 1, have a βi

DISC

(
St, s

i/si
t

)
> 1, while

the opposite is true for low duration assets. The reason is that high duration assets deliver

dividends in the distant future, and thus their prices are particularly sensitive to changes in
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the aggregate discount, which is regulated by St. These assets are then riskier than otherwise

identical assets with lower duration.

An additional characterization of the CAPM beta is provided in the following corollary:

Corollary 3. Let θi
CF = 0 for all i = 1, .., n. Then, for any given level of si/si

t > (<)1,

there exists a S∗
t such that βDISC

(
St, s

i/si
t

)
is decreasing (increasing) in the surplus

consumption ratio, St for St > S∗
t .

Corollary 3 says that for a given relative share si/si
t, the CAPM betas are more dispersed

for low, but not too low, levels of St.12 To gain some intuition it is useful to turn to Panel A of

Figure 1, where we plot the beta as a function of St and si/si
t. First, during booms, when St

is high, the aggregate equity premium is low and thus the prices of all assets are mainly driven

by the expected dividends in the far future. Mean reversion in expected dividend growth then

implies that the variation in the aggregate discount rate has a similar impact on the prices of

the different assets, and thus that they all have similar risk: All betas are close to each other

and around 1. In contrast, when St is low and the aggregate discount rate is high, agents

discount future dividends considerably, and thus the level of current dividend growth matters

more. In this case then, whether the asset has high or low duration is a key determinant of

its riskiness and this yields a high cross sectional dispersion of betas when St is low and the

aggregate premium is high.

III.C The cash-flow beta

How do cross sectional differences in unconditional cash-flow risk affect the main conclu-

sions obtained in the previous section? In order to obtain sharp implications about cash-flow

risk in the context of our cash-flow model (6), we focus in this section on the case with no

discount effects, and leave for the next section the more general case. To shut down discount

effects, we must ensure that Xt = 0 for all t, and thus we assume α = 0 and Yt = Y = λ = 1.

We then obtain the standard log utility representation with multiple assets. The next propo-

sition characterizes the prices and returns of individual securities in this case. Again, part (a)

is shown in MSV.

Proposition 4. Let α = 0 and Yt = Y = λ = 1. Then:
12Recall that for low levels of the surplus consumption ratio, its volatility has to go down in order to keep St

above zero. This effect decreases the volatility of the total wealth portfolio. From the stationary density of St,

a low value of St has a very small probability of occurring, however. See Figure 1 in MSV.
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(a) The price dividend ratio of asset i, is given by

P i
t

Di
t

= Φi
(
si/si

t

) ≡ ( 1
ρ + φi

)
+
(

1
ρ + φi

)(
φi

ρ

)
si

si
t

(25)

(b) The CAPM beta is given by

βi
CF

(
si/si

t, st

)
= 1 +

1

1 +
(

φi

ρ

)
si

si
t

θi
CF −

n∑
j=0

sj
tθ

j
CF

( 1
σ2

c

)
(26)

Equation (25) shows that, as before, the price dividend ratio is increasing in si/si
t. Part

(b) of Proposition 4 provides the CAPM beta with respect to the total wealth portfolio, which

is the specialization of the cash-flow beta in equation (21) to this case. In particular, recall

that under condition (10),
∑n

j=0 sj
tθ

i
CF ≈ 0, and thus (26) simply shows that, intuitively, assets

with a high unconditional cash-flow risk θi
CF have a high market beta.

Notice that now if θi
CF > 0, the premium is higher the lower the relative share, si/si

t,

that is the lower the assets i’s duration. This is also intuitive: assets with low si/si
t have prices

that are mainly determined by the current cash-flows. Thus, naturally, the covariance of cash-

flows with consumption growth, regulated by θi
CF , has substantial impact on the riskiness of

the asset. This results in a relatively higher risk for low duration assets. This implication is in

stark contrast with the behavior of βi
DISC

(
St, s

i/si
t

)
obtained in the previous section, where

we found that high duration assets had a higher risk. As we will see, this implication about

the cash-flow beta, βi
CF , carries over in the general case, yielding a tension between discount

betas and cash-flow betas.

III.D Betas in the general case

The general model, where the cash-flow and discount effects are combined, is more

complex than either one of the cases discussed so far. For this reason, an exact closed form

solution for prices and the corresponding CAPM representation is not available. However,

there is a very accurate analytical approximate solution of the same form as (16), where the

nature of the approximation is contained in the Appendix of MSV. As in equations (23) and

(25), we find

P i
t /Di

t ≈ Φi
(
St, s

i
t/si
)

= Φi
0 (St) + Φi

1 (St)
(

si

si
t

)
(27)

where Φi
j (St), j = 1, 2, are linear functions of St given explicitly in (34) and (35), respec-

tively. The important additional feature of this pricing formula is that it now depends on the

12



parameter θi
CF , that is, the parameter defined in equation (11) that regulates the long-term

unconditional cash-flow risk. Generically speaking, a high θi
CF tends to decrease the price of

the asset.

Given Φ
(
St, s

i/si
t

)
in (27), we can apply the general result in Proposition 2 (b), and

thus obtain the beta representation (19). The formulas are explicitly given in (36) and (38) in

the Appendix. Briefly, βi
DISC

(
St, s

i/si
t

)
is essentially identical to the one obtained in equation

(24), with the only additional feature that a high unconditional cash-flow risk θi
CF is associated

with a higher discount beta.

The most interesting effect of the general model, instead, pertains to the cash-flow beta

βi
CF

(
St, s

i/si
t, st

)
. As in the case with no discount effects, βi

CF

(
St, s

i/si
t, st

)
is still decreasing

in the relative share si/si
t when the unconditional cash-flow risk θi

CF > 0 (see discussion in

Section III.C). In addition, however, it now depends also on the surplus consumption ratio St.

That is, how important cash-flow risk is also depends on the aggregate state of the economy.

Panels B and C of Figure 1 plot the βi
CF

(
St, s

i/si
t

)
for the cases where θi

CF > 0 and

θi
CF < 0, respectively.13 In contrast to the discount beta βi

DISC

(
St, s

i/si
t

)
, we can see that

βi
CF

(
St, s

i/si
t

)
tends to display a higher relative cross sectional dispersion during good times,

that is, when St is high. Intuitively, as we discussed in Proposition 4 (b), a low duration asset

with a positive unconditional cash-flow risk θi
CF > 0 tends to have a high beta, as its price is

mainly determined by current dividends rather than the future ones. This component of the

systematic volatility of the asset price is relatively insensitive to the fluctuations in the discount

rate, as it stems from cash-flow fluctuations. However, during good times the volatility of the

total wealth portfolio is lower than in bad times, as shown in equation (15). Thus, the low

duration asset tends to become relatively riskier – compared to the total wealth portfolio –

during good times, that is, when St is high. A similar argument holds for θi
CF < 0, although

in this case the source of the difference stems from the hedging properties of the asset. In this

case, we obtain that the cash-flow beta, which is negative, is lower when St is high when assets

have low duration. In summary, independently of whether θi
CF is positive or negative the cross

sectional dispersion of cash-flow betas increases when the aggregate premium decreases.

13We make use of the normalization (10) and thus set Σn
i=1s

i
tθ

i
CF ≈ 0. The plots are for values of the

parameters of the underlying cash flow process that are of the same magnitude as the ones found in the

estimation procedure below for the set of industry portfolios we use.
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IV. CONDITIONAL BETAS AND INVESTMENTS

The cost of equity is a key determinant of the firm’s decision to invest. To address the

relation between investment decisions and time-varying betas we propose next a simple model

of the firm’s investment behavior. In this section, we interpret the n risky assets introduced

in Section II as industries, and the betas derived in Section III as industry portfolio betas.

We then link the investment decisions of a small firm with its corresponding industry beta, a

relation that is taken to the data in the empirical section. MSV indeed show that the cash-flow

model (6) offers a reasonable description of the cash-flows associated with industry portfolios.

IV.A A simple model of investment

Consider a small firm in industry i faced with the decision of whether to undertake an

investment project at time t. We assume this project can only be undertaken at time t, as it

vanishes afterwards, has a fixed scale, and requires an exogenous initial investment amount It.

We also assume that projects arrive independently of the firm’s previous investment decisions.14

All these assumptions imply that the textbook NPV rule holds and the firm chooses to invest

by simply comparing the value of the discounted cash flows to the investment needed to attain

them, It. If the investment does take place, the project produces a continuum random cash flow

CFτ up to some random time t + T , where T is a random variable exponentially distributed

with parameter p > 0. We assume that the cash flow process is given by

CFτ = aDi
τετ .

where a is a constant. Here Di
τ is the aggregate dividend of industry i and ετ is an idiosyncratic

component that follows a mean reverting process

dεt = kε (1 − εt) dt +
√

εtσεdBt,

where dBt is uncorrelated with the Brownian motions introduced in Section II. This setting

ensures that the cash flows produced by the new investment inherits the cash-flow risk char-

acteristics of industry i, although the idiosyncratic component may drift these cash flow far

away from the industry mean.15

14Berk, Green, and Naik (1999) and Gomes, Kogan, and Zhang (2003) have recently proposed similar models

of investments though to answer different questions.
15We do not attempt here to offer a general equilibrium model of investments, as doing so is outside the scope

of the simple investment model offered in this section. However, note that if there are N investment projects
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The discounted value of the project’s cash-flows, Vt, is now easy to calculate. Assuming

that investors are well diversified the value of the project at time t is

Vt = Et

[∫ t+T

t
e−ρ(s−t) uc (Cs − Xs)

uc (Ct − Xt)
CFsds

]
(28)

and investment occurs according to the textbook NPV rule, that is, if Vt > It.

To understand the relation between betas and investments, it is convenient to rewrite

(28), the value of the specific project at hand,16 in the more familiar form (see Appendix):

Vt = Et

[∫ t+T

t
e−
∫ s
t

rτ+βτ×µTW
τ dτCFsds

]
, (29)

where rτ is the risk free rate at τ , µTW
τ is the expected excess return on the total wealth

portfolio, and

βτ = β
(
Sτ , si/si

τ , ετ

)
=

Covτ

(
dVτ/Vτ , dRTW

τ

)
V arτ

(
dRTW

t

)
is the beta with respect to the total wealth portfolio. Equation (43) in the Appendix shows

that βτ has a representation similar to the one in (19).

It is clear now that even when the standard positive NPV rule applies and the conditional

CAPM holds, as they do in this simple framework, the prescription of computing separately

the cost of capital and expected future cash flows is misleading as

Et

[
e−
∫ s

t rτ +βτ×µTW
s dτCFs

]
	= Et

[
e−
∫ s
t rτ+βτ×µTW

τ dτ
]
Et [CFs] .

Even when the expected excess returns on the market portfolio µTW
s is constant, the presence

of predictable components in dividend growth induce time varying betas that naturally cor-

relate with the future cash flows of new projects.17 Variation in the aggregate premium only

complicates the problem further.

alive at any time t in industry i, and a = 1/N , an application of the central limit theorem shows that the total

cash flows from these projects approaches Di
t as N → ∞. The model can then potentially be closed by a simple

assumption that the industry produces a total output rate given by K i
t = Di

t + Ii
t , where Ii

t is the aggregate

investment defined by the optimal investment rule below.
16This should not be confused with the value of the firm, which includes the portfolio of current projects plus

the options to invest in all future projects that arise.
17And there are predictable components in dividend growth. MSV show that the relative share si/si

t forecasts

dividend growth for the majority of industries in our sample (see their Table III.) Ang and Liu (2004) also

emphasize that the cost of capital cannot be computed separately from the expected cash-flows in a setting

where the beta dynamics are assumed exogenously.
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Given that the decision to invest has to be taken before εt is known and that E [εt] = 1,

the Appendix shows that NPV rule is given by

Vt = aDi
tΦ

V
(
St, s

i/si
t

)
> It (30)

where ΦV
(
St, s

i/si
t

)
is as in (27) but where the parameter ρ is substituted for ρ + p. That

is, investments occur when prices are high, which occur when either the surplus consumption

ratio St is high, Di
t is high or si/si

t is high. In our setting, however, Di
t = si

tCt. From the

formula of ΦV
(
St, s

i/si
t

)
in (27), and assuming that the size of investment grows with the

economy, It = bCt, we find that investment occurs whenever

V N
t =

si
t

si
ΦV

0 (St) + ΦV
1 (St) > I∗ =

b

asi
, (31)

where V N
t = Vt/Ct, and ΦV

0 (St) and ΦV
1 (St) are as in (34) and (35) in the Appendix with

the only exception that ρ is substituted for ρ + p, as already mentioned. The implications for

the firm’s investment rule are now clear and intuitive. Given that ΦV
0 (St) and ΦV

1 (St) are

positive, increasing functions of St, investments occur when the surplus consumption ratio, St,

is high, that is whenever the aggregate premium is low.18 It also occurs whenever si
t/si is high,

that is, when the industry expected dividend growth is low. The reason is that an industry

with high dividend today relative to those in the future is one with high valuations as well, as

measured for instance by the price consumption ratio.

IV.B Changes in betas and changes in investments

Equation (31) offers a complete characterization of the firm’ investment policy. Our

purpose next is to link this behavior to the variation in betas. After all, cross sectional

differences in the discount can only arise due to cross sectional differences in betas. Here turning

to Figure 1 is helpful to offer intuitive predictions about the relation between investments and

betas. The question is whether β is high when prices are high, or, to put it differently, whether

β increases or decreases when prices increase, since the decision to invest is related to changes

in prices that push V N
t above I∗. The classical CAPM setting would intuitively suggest that a

high beta implies a high cost of capital, and thus lower prices discouraging the firm to invest.

The endogenous time variation in betas offers a more subtle picture of the cross sectional

differences in the cost of equity firms may face depending on the industry they belong to.
18This proposition has, of course, received considerable attention. See, for example, Barro (1990), Lamont

(2000), Baker, Stein, and Wurgler (2003), and Porter (2003).
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Assume first that there are no cash flow effects (θCF = 0) so that βt = βDISC (.), which

is plotted in the top panel in Figure 1. Equation (31) shows that investment occurs when the

surplus consumption ratio St is high or the relative share si/si
t is low. As shown in the top

panel of Figure 1, the combination of a high St and a low si/si
t results in a low discount beta.

Thus, if discount effects dominate the risk-return characteristics of projects, investment occurs

when betas decrease.

The opposite conclusion obtains in the presence of substantial cash-flow risk. In this

case, the total beta is the sum of the discount beta and the cash flow beta. Consider first the

case where θCF > 0 (the middle panel in Figure 1.) The cash-flow beta is high whenever the

surplus consumption ratio St is high or the relative share si/si
t is low, the conditions that lead

to higher investment according to (31). In addition, a positive θCF implies that, on average,

an increase in the surplus St is correlated with an increase in the share si
t and thus negatively

correlated with the relative share si/si
t. Thus, on average, the cash-flow beta of assets with a

high θCF > 0 moves along the ray of low surplus−high duration to high surplus−low duration.

This implies that if θCF is positive and sufficiently large, a positive relation between investment

growth and change in betas should occur.

The case where θCF < 0, plotted in the bottom panel of Figure 1, leads to the same

conclusion, although the intuition is slightly more involved. First of all, a negative θCF < 0

implies on average cash-flow betas move along the ray of low surplus−low duration area to

the high surplus−high duration. Moreover βCF is increasing along this diagonal. Since the

effect of changes in St on prices is intuitively the most important one – all prices are high in

good times – it follows that, on average, a positive relation between investment growth and

the cash-flow beta obtains as well.

V. EMPIRICAL ANALYSIS

V.A Data

Our data and estimation of parameters can be found in MSV. Briefly, quarterly dividends,

returns, market equity and other financial series are obtained from the CRSP database, for the

sample period 1946-2001. We use the Shiller (1989) annual data for the period 1927-1945, where

we interpolate the consumption data to obtain quarterly quantities. We focus our empirical

exercises on a set of twenty value-weighted industry portfolios for which summary statistics

are provided in Table AI. There are two reasons to focus on this set of portfolios: The first is

that they enable us to obtain relatively smooth cash-flow data that are a-priory consistent with
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the underlying model for cash-flows put forward in this paper (equation (6)). We concentrate

our analysis on a coarse definition of industries – the first two SIC codes – which are likely to

generate cash-flows for a very long time. A second reason to focus on industry portfolios is

that, as shown by Fama and French (1997), they display a large time series variation in their

betas, precisely the object of interest in this paper.19 Moreover, industry portfolios show little,

if any, cross sectional dispersion in average returns. This may suggest that there is little cross

sectional dispersion in cash-flow risk across these portfolios. We show how testing whether

the cross section of betas is positively or negatively related to the aggregate equity premium

uncovers instead important cash-flow effects. This set of test portfolios then seems an ideal

laboratory to test many of the implications of the model.

The cash-flow series includes both dividends as well as share repurchases (constructed

as in Jagannathan, Stephens, and Weisbach (2000)) a detailed description is included in the

Appendix in MSV. With some abuse of terminology we use the expressions “cash-flow” and

“dividend” interchangeably throughout the empirical section. Finally consumption is defined as

real per capita consumption of non durables plus services, seasonally adjusted and is obtained

from the NIPA tables. All nominal quantities are deflated using the personal consumption

expenditure deflator, also obtained from NIPA.

MSV contain a number of tests showing that log
(
Di

t

)
and log(Ct) are cointegrated series

for most industries (twelve out of twenty), and that indeed the relative share si
t/si

t is the

strongest predictor of future dividend growth, as the model implies. Finally, they show that

the cross-sectional and time variation in price dividend ratios implied by the model nicely line

up with the empirical data.

As for the definition of investments, we define them as Capital Expenditures (Compustat

Item 128) over Property, Plants, and Equipment (PPE, Compustat, Item 8). Individual firm

investments are aggregated to industry investments in three different ways: Total Capital

Expenditure over Total PPE, referred to as Total Investments, or as a value-weighted or

equally weighted average of firm investments. Data are available from 1951 - 2001, at the

annual frequency.

Finally, Table I reports the estimates of the parameters used for the simulations below.
19Braun, Nelson, and Sunier (1995, page 1584-5) also find that “the evidence for time-varying betas is some-

what strong” for their set of industry and decile portfolios. In addition these authors compare the rolling

regression estimate of the five year window beta with the estimate obtained from an EGARCH model and show

that these two estimates track each other rather well (see their Figure 1.) Ferson and Harvey (1991) also find

substantial variation in the betas of the industry portfolios in their sample.
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These parameters are as in MSV and the reader is referred to Appendix B in that paper for

details.

Estimation of θi
CF

As repeatedly emphasized, θi
CF is the key parameter in evaluating many of the asset

pricing implications of the model. We estimate this parameter using two alternative procedures.

Our first estimate relies exclusively on cash-flow data. Specifically we make use of expressions

(11) and (10) which yield θi
CF = E

[
covt

(
dδi

t, dct

)]− var (dct). Given that Et [dct] is constant,

we simply have θi
CF = cov

(
dδi

t, dct

) − var (dct) and estimate it accordingly. These estimates

are reported in Table I in the column denoted θi
CF -Cash-flow.

Our second estimation procedure uses stock return data to back out the cash-flow pa-

rameter θi
CF . This estimation procedure is motivated by the fact that, as we show below, when

we estimate θi
CF using only cash-flow data, the cash-flow beta βi

CF fluctuates too little. As

noted by Campbell and Mei (1993, page 575) cash-flow betas are only imprecisely estimated

and thus it is natural to ask whether the lack of variation in betas is due to a downward bias

in our estimates of θi
CF . Specifically, we estimate θi

CF and vi using a GMM procedure where

the moment conditions are constructed as follows. First define,

ui
1,t = Ri

t − βi
(
St, s

i/si
t, st

)
RM

t

ui
2,t =

(
Ri

t

)2 − σ2
Ri

t

(
St, s

i/si
t, st

)
where βi

(
St, s

i/si
t, st

)
is the theoretical beta as given in expression (19) and σ2

Ri
t

(
St, s

i/si
t, st

)
is the theoretical variance of returns implied by expression (17). The moment conditions are

then given by

E
[(

ui
1,t, u

i
1,tR

M
t , ui

2,t

)′]
= 0

To make sure that the system is not underidentified we assume, for simplicity, that the

vector of constants governing the diffusion component of the share process (see expression (6))

is such that

vi =
(

θi
CF

σc
, 0, . . . , 0, vi, 0, . . . , 0

)
,

where the only non-zero element besides θi
CF /σc, the systematic component, occurs in entry

i + 1.

The results of the estimation are contained in Table I under the heading θi
CF−Return.

As can be readily noted, there is a remarkable difference in the estimates across these two

alternative procedures. First notice that the estimates in, absolute terms, are off by a factor of
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ten! Estimating θi
CF using returns emphasizes the point that resorting only to cash-flow data

may seriously underestimate the amount of cash-flow risk present in the data. Second, notice

as well that many of the estimates flip signs, and whereas negative signs dominate when only

cash-flow data is used, positive ones do when returns data is used.

V.B Can the model generate substantial variation in betas?

Fama and French (1997) provide a simple estimator of the time variation in betas: Under

the assumption that the sampling error associated with the market betas is uncorrelated with

the true value of the beta, the variance of the rolling regression beta is the sum of the variance

of the true market beta and the variance of the estimation error, or in symbols,

σ2
(
β̂t

rolling-regress.
)

= σ2 (βt) + σ2 (εt) , (32)

where β̂t

rolling-regress.
is the estimated rolling regression beta, βt stands for the true beta and

εt is the estimation error.20

Table II reports the estimates for σ2 (βt) for our set of industry portfolios. The average

standard deviation of betas is .14, which, incidentally, is only slightly higher than the one

obtained by Fama and French (1997) for a set of 48 industry portfolios. Thus if the beta of

an average industry were to be one, a two standard deviation of beta yields variation between

.74 and 1.28, which is rather substantial. Some of them, like Retail, Petroleum, Mining,

Department Stores, Fabrication Metals, and Primary Metals display standard deviation of

betas that are above .20. Thus if the average beta of retail is around one, a two standard

deviation around the mean yields betas that fluctuate between .46 and 1.54!

Can our model yield comparable variation in betas? The next two columns in Table II

report the standard deviation of the betas in our model in 40,000 quarters of artificial data.

The column under the heading “θi
CF−Cash-flow” reports the standard deviation of theoretical

betas when θi
CF is estimated using only cash-flow data, that is as the covariance of dividend

and consumption growth. The variation of betas in this case does not match the one observed

in the data and hovers around .02. The only exception is Primary Metals, where the variation

of the theoretical beta reaches 0.10.
20Clearly, when the variance of the true beta is estimated as the difference of the variance of the rolling

regression beta and the variance of the estimation error there is no guarantee that the variance of the true beta

is greater than zero. In this case we follow Fama and French (1997) and set the variance equal to 0. This occurs

in our sample for only two industries, Electrical Equipment and Manufacturing.
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The results are rather different when we estimate the cash-flow parameters using returns

data, as described in the previous section. These results are reported in the column under

the heading “θi
CF−Returns.” In this case the average standard deviation is given by .10,

which is close to the average standard deviation obtained through the Fama and French (1997)

procedure, see equation (32) above, which was .14. Also notice that in the case of θi
CF−Cash-

flow only one industry out of twenty had a standard deviation of beta above .10, Primary

Metals. Now the number has increased up to ten. For instance, the model can generate

a substantial variation in the betas of Primary Metals, Utilities and Food, which also had

a large variation in the betas as estimated by Fama and French (1997). There are clearly

some shortcomings as, for example, Electrical Equipment where the data suggests a very

low variation in the market loading whereas the model attributes a standard deviation .22.

However, small sample accounts for a large part of these differences. In fact, Figure II reports

the results of a different simulation exercise: we obtain 1,000 samples of artificial data, each 54

years long. On each sample we estimate the standard deviation of beta as described in (32).

The top panel in Figure II reports the 95% simulation bands of σ(βt) (solid lines) along with

the point estimates in the data (stars) for the case where θi
CF is estimated using cash flows.

The bottom panel reports the same quantities for the case where θi
CF is estimated using stock

returns. In this latter case, it is indeed the case that the majority of point estimates of σ(βt)

from the data (stars) fall in the simulated bands (thirteen out of twenty). When θi
CF is instead

estimated from cash flow data, the empirical estimate of σ(βt) fall in the bands for only five

industries, a result that is in line with those reported in Table II.

In summary then, the estimate of θi
CF turns out to have a rather substantial impact on

the behavior of the conditional beta, not only the unconditional one, as one may suppose at

first. The reason is that the duration effect associated with cash-flow risk, the fact that assets

with high cash-flow risk have higher risk the shorter their duration, is a key determinant of

risk. But if this is the case, this observation has strong implications for the time series behavior

of the cross sectional dispersion of risk over time, to which we now turn.

V.C The cross sectional dispersion of betas

We now investigate the time series properties of the cross sectional dispersion of betas.

We run the following time series regressions

Ri
t+1 = αi + βi

Up

(
Idx

Up
t RM

t+1

)
+ βi

Do

(
IdxDo

t RM
t+1

)
+ εi

t+1

where Ri
t+1 and RM

t+1 are the excess return on industry i and the market between t and t + 1,
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respectively, and IdxUp
t and IdxDo

t are indicator functions of whether times are good (Up) or

bad (Do), that is, whether the aggregate equity premium is low or high. We consider two

different proxies for good and bad times: (i) the market price dividend ratio, with Idx
Up
t = 1

if the price dividend ratio of the market is above its historical 70 percentile, and IdxDo
t = 1

if price dividend ratio is below its historical 30 percentile; and (ii) the surplus-consumption

ratio St itself, where again IdxUp
t = 1 or IdxDo

t = 1, if the surplus is above its 70 percentile,

or below its 30 percentile.21 How can we formally test whether the cross sectional variance

of βi
Up is higher or lower than the cross sectional variance of βi

Do? Assuming that βi
Up and

βi
Do are drawn from a normal distribution with two different variances, σ2

Up and σ2
Do, we can

use the statistics V arCS
(
βi

Up

)
/V arCS

(
βi

Do

)
, which has an F -distribution, with 19 degrees of

freedom. The results are in Table III.

Panel A of Table III shows that for both samples, 1927 - 2001 and 1947 - 2001 the

dispersion of betas is significantly higher when the aggregate equity premium is low, with the

exception of the long sample when the surplus consumption ratio is used a sorting variable, in

which case the difference is not statistically significant. In particular, there is no evidence that

dispersion of betas is higher during bad times.

These findings have a clear interpretation in light of our model. Essentially, cash-flow

effects have to be strong in order to undo the positive relation between the cross sectional

dispersion of betas and the aggregate equity premium that discount betas induce (see Corollary

3). That is, these findings can be explained by either a strong time variation in the cross-

sectional dispersion of expected dividend growth, proxied by STDCS
(
si/si

t

)
, and/or substantial

unconditional cash-flow risk θi
CF 	= 0. Indeed, the effect of the time variation in si/si

t can also

be seen in the last line of Panel A, where it shows that the dispersion of betas is higher when

also the dispersion of relative shares is high, especially in the postwar period.

To disentangle the effects of the dynamics of the dispersion of relative shares STDCS
(
si/si

t

)
from the unconditional cash-flow risk, we decompose in Panel B of Table III the variation in

return betas in its two basic sources, variation in aggregate discounts (St) and variation in

dispersion in cash-flow growth
(
si/si

t

)
. In this case, in addition to Up and Down periods as

defined in Panel A, we also define an index of whether the cross sectional dispersion of relative

shares STDCS
(
si/si

t

)
is high or low, where we set the cutoff levels to the median in all cases

now in order to have a sufficient number of observations for each of the four categories (Up-Hi,

21We obtain the surplus consumption ratio St by computing a sequence of consumption shocks dB̂t = dct −
Et [dct] and then applying recursively formula (3).
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Do-Hi, Up-Lo, Do-Lo). As before, we run the time series regressions

Ri
t+1 = αi +

∑
k=Up,Do

∑
h=Hi,Lo

βi
kh

(
Idxkh

t RM
t+1

)
+ εi

t+1

and test whether the ratios V arCS
(
βi

kh

)
/V arCS

(
βi

k′,h′
)

are statistically different from 1.

Panel B of Table III reports the results for the case where Up and Down periods are

defined either with the log price dividend ratio of the market or the surplus consumption ratio.

There is a strong difference in the dispersion of market betas between the Up-High period and

Down-Low period for both the 1927 - 2001 and the 1947 - 2001 sample. Indeed, the difference

in the cross sectional standard deviation of market betas is not only strongly statistically but

also economically significant, as it equals 0.27 and 0.39 for the Up-High period in the 1927-2001

and 1947-2001 sample respectively, while it is less than half those numbers during the Do-Low

period. The second finding is that even after controlling for the dispersion of relative shares,

Up periods are characterized by a higher dispersion of betas than Down periods. The only

exception to this is again in the full sample when the surplus consumption ratio is our proxy

for the aggregate state of the economy and the cross sectional dispersion of relative shares is

high. However, the difference is again not statistically significant.

These results are also important because they help to bring together two statements

that may seem difficult to reconcile at first. On the one hand the cross sectional dispersion

of unconditional returns in our set of industry portfolio is low whereas as Fama and French

(1997) demonstrate, and the results in Section V.B confirm, there is considerable variation in

the loadings on the market portfolio. Table III shows why: The main cross sectional variation

in betas occurs during good times, that is periods when aggregate expected returns are low.

But this implies that when beta are dispersed, they are multiplied by a low aggregate market

premium, and thus the dispersion of industry average returns is low. In contrast, when the

dispersion of betas is low, the aggregate expected excess return is high, and thus the variation

in conditional expected returns of industry portfolio is still low. Unconditionally, then, we

should observe relatively little cross sectional dispersion in average returns, precisely what we

see in the data for the set of industry portfolios.

To summarize, the evidence in Table II and III supports the view that cash flow effects

have to be relatively strong to induce both a substantial variation in the market betas and,

in addition, generate a dispersion in betas that is inversely related to the aggregate market

premium.22

22Our empirical results are robust to alternative methodologies and sample periods: for instance, we also
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V.C.1 Simulations

We now turn to our artificial data to verify whether the model can reproduce the mag-

nitudes of the empirical results in Table III. Table IV reports the results. The headings

θCF−Cash-flows shows the simulation results for the case where θi
CF are estimated from cash

flow data (see Section V.B). The magnitudes are puny compared to what is observed in the

empirical data though there is a slightly higher dispersion of the betas in “Up” periods versus

“Down” periods. This result extends to the case where the dispersion of betas is also condi-

tional on the cross sectional dispersion of the relative share. That is, using the parameters

θi
CF−Cash-flow, the model cannot yield the magnitudes of the cross sectional dispersion of

betas that is observed in the data. This is the same observation made in Section V.B – Table

II – regarding the little time series variation in betas that result when using θi
CF−Cash-flow.

Results are quite different when the cash-flow risk parameters are estimated from returns,

reported under the heading θi
CF−Returns. Now the overall magnitudes are much closer to the

corresponding ones in the empirical data. The cross sectional dispersion of betas is higher when

both the price dividend ratio of the market portfolio and the surplus consumption ratio are high,

which matches the empirical results in Table III. When we condition on both the aggregate

state of the economy and STDCS
(
si/si

t

)
though, the model cannot generate the differences in

the cross sectional dispersion in betas due to variation in cross-sectional dispersion in relative

share. Still, the very strong difference in the cross sectional dispersion of betas across the

Up-High and Down-Low states observed in the long and short samples and for both PM
t /DM

t

and St is nicely born in simulations almost to the point.

V.D Conditional Betas and Investments

The negative relation between the cross sectional dispersion of betas and the aggregate

equity premium established in Section V.C confirms that the cash-flow component of market

betas dominates the risk-return trade-off. As Section IV shows this also implies that changes

in beta should be positively correlated with changes in investments. To test this proposition

Tables V and VI report the results of annual panel regressions of industry real investment

growth on changes in the price consumption ratio of the industry portfolio, normalized by its

average price consumption ratio,
(
P i

t /Ct

)
/PC, changes in relative share, si/si

t, and changes

computed conditional betas both through simple rolling regressions and by using standard conditioning variables,

such as the market dividend yield, the term spread, the corporate bond spread, and Lettau and Ludvigson (2001)

cay. In either case we find a strong positive relation between the cross-sectional dispersion of conditional betas

and the market P/D ratio.
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in conditional betas, βi
t, and their lags. Specifically we run

gi
t = α0,i + α0,t + α1 ·∆Xt + α2 · ∆Xt−1 + εi

t

where gi
t denotes the investment growth at time t in industry i, as defined earlier, α0,i denotes an

industry fixed effect, α0,t denotes a year dummy, and ∆Xi
t denotes the changes in explanatory

variables. Lags are included in the regression to control for possible lags on investments

growth (see Lamont (2000)). Panels A, B and C report the results when industry investment

is measured as industry total investments, or as the value or equal weighted average investment,

respectively, as defined in Section V.A. Table V does not include year dummies whereas Table

VI does in order to control for market wide factors. Finally t−statistics are computed using

robust standard errors clustered by year.

Start with Line 1 of Table V across the three different Panels, which only includes con-

temporaneous and lagged changes in prices. Lagged changes in prices are always positive and

statistically significant at the 5% level independently of the definition of investment growth

used. Instead contemporaneous changes in prices are never significant. These results are consis-

tent with previous literature (see e.g. Barro (1990) and Lamont (2000)).23 As for the changes

in the relative share (Line 2) notice that this variable always enter with the negative sign,

as predicted by the model, but it is only strongly significant when investments are measured

as total investments. Instead it is not significant at the 5% when investment is measured as

equally or value weighted average investment.

Lines 3 and 4 test the proposition that if cash-flow risk is determinant in the risk re-

turn trade-off of assets prices, a positive correlation should obtain between contemporaneous

changes in betas and investment growth. We estimate βi
t of industry i at time t by using a

rolling regression of industry i returns in excess of the one month t-bill rate on the market

portfolio excess return for the 24 months preceding t.24 Recall that when cash-flow effects are
23To follow standard practice in the investment literature we also ran the panel regression using changes in

market-to-book as our measure of changes in valuation and find, consistent with the unsatisfactory performance

of q−models, much weaker results for M/B. The results regarding betas where instead very similar.
24The results in Tables V and VI are robust to alternative definitions of beta. For instance, we find that the

alternative timing convention where βt is estimated using a rolling regression in the 24 months around t, rather

than preceeding t, yields in fact stronger results. Similarly, since it can be argued that the relevant beta for a

firm’s investment decision is the asset beta rather than the levered equity beta, we also run the panel regressions

by using the standard correction βasset,t = Et/(Lt + Et)βequity,t,where Et is total industry equity and Lt is

total industry debt. Again, the results are very similar and typically stronger, since Et/(Lt + Et) tends to be

high in good times. These results are available upon request.
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strong, betas should correlate negatively with the aggregate premium. As discussed in Sections

III and IV, prices (and valuations) increase as the aggregate premium falls and thus so does

investment. As a consequence, in the presence of strong cash-flow risk, a positive relation be-

tween investment growth and betas results. This implication is met with considerable support

in the data across the different specifications. The coefficient has always the sign predicted

by theory and it is statistically significant throughout. Lagged values of changes in betas are

also significant. This result confirms the evidence presented in section V.C concerning the

importance of cash-flow effects in determining the risk-return characteristics of asset prices.

Finally, Table VI redoes the exercise in Table V but now year dummies are added to

remove period specific effects. Briefly, notice that now lagged changes in valuations are no

longer significant whereas the contemporaneous changes in betas are still significant throughout

all different specifications. As for changes in the relative share, as before, they are only

significant when investment growth is measured as total investments.

V.D.1 Simulations

To gauge the magnitude of the cash-flow effects, we reproduce in Table VII the results of

panel regressions equivalent to those in Tables V and VI but now in artificial data. According

to the model, investments occur when the industry price consumption ratio is above a cut

off, which we assume to be equal to the long term average price consumption ratio. The cost

of each investment project is assumed to be proportional to consumption. The normalized

investment rate in a given quarter is then just simply a constant. We aggregate quarterly

investments to annual to have comparable figures to those of Table V and VI. Finally, to

deal with a dimensionality problem that arises in inserting year dummies in 10,000 years of

artificial data, we divide our long sample in 20 time series of 500 years each. As in previous

sections, results are reported for the parameter choices θi
CF−Cash-flow and θi

CF−Returns.

For each panel regression we report the mean, median, 5 and 95 percentiles of the estimated

coefficients across the 20 samples. In these simulations, we only run the multivariate regression,

corresponding to line 4 in each panel of Tables V and VI, and we did not include any lags, as

the simple model proposed in Section IV does not account for any adjustment costs or time

differences between investment decision and actual investments.

Start with Panel A which reports panel regressions without year dummies and thus

should be compared with Table V. The sign of the coefficient on ∆
(
P i

t /Ct

)
/PC is positive

and close in magnitude to the corresponding one on the lagged coefficient in the empirical

data, especially for the case where the cash-flow risk parameter θi
CF is calibrated using returns
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(Panel A.2). Recall that from Section V.B and V.C, this calibration is also the most effective

to match the magnitude of the time variation in asset betas. As for the changes in the relative

share si/si
t, they are negative, as expected, but their magnitude is smaller in absolute value

than the corresponding empirical estimates in Table V. Still, in most cases the estimates in

Table V are imprecise and thus the numbers are not statistically different from each other.

As for the impact of changes in betas ∆βi
t, when the θi

CF is measured using cash-flows

alone (Panel A.1) the sign of the mean and median estimates of the coefficient is negative, which

is consistent with the fact that discount effects dominate the risk return trade-off. When

θi
CF−Returns is used instead (Panel A.2), the magnitudes are large enough to, once again,

induce sufficiently strong variation in the cash-flow beta and yield the positive correlation

between investment growth and changes in betas. The magnitude of the coefficient in simulated

data is smaller though than the corresponding point estimates in Table V, showing that the

cash flow effect in the data may be even stronger than what the calibrated model implies.

Finally, similar results obtain when year dummies are included. In both data and sim-

ulations, especially in the case θi
CF−Return (Panel A.2), the coefficients on changes in prices

decrease, while the coefficients on ∆βi
t increase. The effect on relative share is instead un-

changed between the cases with and without year dummies, as one would expect because

relative shares are industry specific.

VI. CONCLUSIONS

Betas, the classic measure of an asset’s risk, is a fundamental input in any valuation

problem, whether it be an investment project or a financial asset. This paper is concerned

with the determinants of this fundamental measure of risk, a challenging problem given that

there is substantial evidence that these betas fluctuate over time. This paper uses a general

equilibrium asset pricing model to show that conditional betas depend on the level of the

aggregate premium itself; the level of the firm’s expected dividend growth; and the firm’s

fundamental risk, that is, the one pertaining to the covariation of the firm’s cash-flows with

the aggregate economy.

We investigate the interaction between these three elements by decomposing the condi-

tional beta into a discount beta and a cash-flow beta. The first reflects the sensitivity of prices

to shocks in the aggregate discount whereas the second captures the sensitivity of the price to

shocks to cash flows. We show that the time series properties of the cross section of betas is

driven by whether the discount beta or the cash-flow beta is a more important determinant

27



of the overall conditional beta. In particular, if the cash-flow beta dominates the risk-return

trade-off we show that the cross sectional dispersion of betas correlates negatively with the

aggregate discount. Moreover, we show that strong cash-flow effects are needed to match the

observed time series variation in betas. We also propose a model of firm behavior that links

investment decisions to changes in betas and find that, in the presence of strong cash-flow

effects, changes in investments should correlate positively with changes in betas.

Our empirical exercises reveal the consistent pattern that cash-flow risk must play a

dominant role in shaping the conditional risk-return characteristics of asset prices. Indeed, we

find substantial evidence that industry market betas display a large time variation, that their

cross-sectional dispersion is high when the aggregate equity premium is low and, finally, that

investment growth in physical capital is high when market betas increase. The magnitudes of

these empirical facts can only be explained in our model when industries are characterized by

cross-sectional differences in cash flow risk, and the aggregate equity premium is time varying.

An important message of this paper then is that the properties of the underlying cash-

flow process, both the asset’s duration as well as the covariation of the asset’s cash-flow with

the aggregate state of the economy, are key if one is to understand the role of conditioning

information in asset pricing tests. For instance, one way researchers typically capture condi-

tioning information is by instrumenting betas with observable state variables. Differences on

how assets’ betas load on these state variables can only be due to differences in their cash-flow

processes. Thus, for example, the way the conditional cross section of returns varies with the

relevant conditioning variables depends on the cash-flow properties of the set of test portfolios.

An important direction for future research then is to link the observed cross sectional disper-

sion in average returns to the dispersion in the fundamental cash-flow parameters in order to

obtain a more economically based view of what determines the dispersion in the risk-return

trade-off across different assets and different time periods. This paper makes progress in this

direction by offering an explicit characterization of the betas as a function of the relevant

cash-flow parameters.
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APPENDIX

(A) The Approximate Pricing Functions and Betas
(I) The approximate pricing formula is given by

P i
t

Di
t

≈ Φ0 (St) + Φi
1 (St)

si

si
t

; (33)

where

Φi
0 (St) =

1(
ρ + k + φi + αθi

CF

) (1 +
kY + λα θi

CF

ρ + φi St

)
(34)

Φi
1 (St) =

φi/ρ(
ρ + k + φi + αθi

CF

) ( ρ + kY St

ρ + k
+

(
kY + λα θi

CF

)
St

ρ + φi

)
(35)

It is easy to see that if Y = 1 = St = λ and α = 0, the formula (33) is the same as the one in Proposition 4

(Model B), while if θi
CF = 0, the formula is the same as the one shown in the proof of Proposition 3 (Model A).

The derivation below also shows that in these cases the approximation is in fact exact.
(II) The betas corresponding to (33) are as follows:

βi

(
St,

si

si
t

)
= βi

DISC

(
St,

si

si
t

)
+ βi

CF

(
St,

si

si
t

)

(a) The Discount Beta is given by

βi
DISC

(
St,

si

si
t

)
=

1 + Y kSt

Y kSt+ρf(si/si
t;θ

i
CF )

σS (St)

1 + kY S
kY St+ρ

σS (St)
(36)

where

f
(
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t; θ
i
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Y k
)−1
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(
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)

In addition, f
(
si/si

t; θ
i
CF

)
has the properties (i): f ′ (si/si

t; θ
i
Cf

)
< 0 if and only if θi

CF > − (ρ+φi+k)Y

λα
; (ii)

f
(
1; θi

CF

)
> 1 if and only if θi

CF < 0; (iii) ∂f
(
si/si

t; θ
i
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)
/∂θi

CF < 0; and (iv) θi
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(
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) (
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(
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)
+ ρ
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which, in turn, has f (1) = 1.
(b) The Cash-Flow Beta is given by

βi
CF

(
St,

si

si
t

, st

)
= H (S)

(
1

1 + φi

ρ
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(
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where

H (S) =
σc,1

σTW (St)
=

kY St + ρ

kY St + ρ + kY StσS (St)

G (St) =

(
ρ + φi

) (
ρ + kY St

)
+ (ρ + k)

(
Y k + λ αθi

CF

)
St(

ρ + φi
)
(ρ + k) + (ρ + k)

(
Y k + λαθi

CF

)
St

In addition,

(i) H ′ (S) > if and only if St >
−ρλ+

√
ρ2λ2+kY λρ

kY λ
;
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(ii) G
(
Y

−1
)

= 1

(iii) G′ (S) > 0 if and only if θi > −Y (ρ+φi+k)
λ α

.

(B) Proofs
In this appendix, define for convenience vY = −ασc. The inverse surplus process can be rewritten as

dYt = k
(
Y − Yt

)
dt + (Yt − λ) vY dBt. (39)

By Ito’s Lemma, the process for surplus St = 1/Yt is then

dSt/St =
(
k
(
1 − Y St

)
+ (1 − λSt)

2 α2σ2
c

)
dt − (1− λSt)vY dB′

t.

Since the diffusion part can be written as − (1− λSt) vY = α (1 − λSt) σc, it is convenient to denote σ (St) =
α (1 − λSt) . . Finally, the pricing kernel mt = uc (Ct, Xt, t) = e−φtYt/Ct follows the dynamics

dmt/mt = −rtdt + σmdB′
t

where

rt = φ + µc,t − σ2
c + k

(
1− Y St

)− α (1− λSt)σ2
c,

σm = − (1 + α (1 − Stλ))σc,

Proof of Proposition 1 : From P i
t /Di

t = Φ
(
St, s

i/si
t

)
, we can generically write (with a slight abuse of notation)

P i
t = P i

(
Ct, St, s

i
t

)
= CtΨ

(
St, s

i
t

)
, where Ψ

(
St, s

i
t

)
= si

tΦ
(
St, s

i/si
t

)
. An application of Ito’s Lemma yields

equation (17). In fact,

dP i
t

P i
t

=
∂P i/∂Ct

P i (Ct, St, si
t)

dCt +
∂P i/∂St

P i (Ct, St, si
t)

dSt +
∂P i/∂si

t

P i (Ct, St, si
t)

dsi
t

Since ∂P i/∂Ct = Ψ
(
St, s

i
t

)
and P i

(
Ct, St, s

i
t

)
= CtΨ

(
St, s

i
t

)
, the diffusion component of dP i

t /P i
t is

σi
P = σc +

∂P i/P i

∂St
Stσ (St)σc +

∂P i/P i

∂si
t

si
tσ

i (st)

where σ (S) = α (1 − λSt) and σi (st) is the diffusion of dsi
t/si

t. Since the diffusion part of the price process σi
P

must equal the one of excess returns dRi
t = dP i

t /P i
t + Di

t/P i
t dt − rtdt, equation (17) follows.

As for part (b), the price of the total wealth portfolio is P TW
t = CtΨ

TW (St). A similar derivation as

above implies that we can write σTW
R = σc + ∂PT W /PT W

∂St/St
σ (St) σc. Since the total wealth portfolio is perfectly

correlated with the stochastic discount factor, a beta representation exists for the expected returns of individual
securities (see e.g. Duffie (1996, page 229)). Thus,

βi
(
St, s

i
t

)
=

covt

(
dRi

t, dRTW
t

)
vart (dRTw

t )
=

σi
R (St, st) σTW

R (St)
′

σTW
R (St)σTW

R (St)
′

Since by definition σc = (σc,1, 0...,0), we find

σTW
R (St)σTW

R (St)
′ =

(
1 +

∂P TW /P TW

∂St/St
σ (St)

)2

σcσ
′
c

and

σi
R (St, st)σTW

R (St)
′ =

(
1 +

∂P i/P i

∂St
Stσ (St)

)(
1 +

∂P TW /P TW

∂St/St
σ (St)

)
σcσ

′
c

+

(
∂P i/P i

∂si
t/si

t

)(
1 +

∂P TW /P TW

∂St/St
σ (St)

)
σi (st) σ′

c.

Substitution yield equations (20) and (21).�
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Proof of Proposition 2 : Part (a) is shown in MSV. Using their results, one obtains expression (23) where Φ0 (St)

and Φ1 (St) are identical to equations (34) and (35) for θi
CF = 0. Part (b) can be obtained by following the

same steps as in the proof for the general case, obtaining βi
DISC

(
St, s

i/si
t

)
as in (36) with f

(
si/si

t

)
given in

(37).�
Proof of Proposition 3 : Part (a) is shown in MSV. Part (b) follows from the general result in equation (21) with

the pricing function in (25), where we must set ∂PT W /PT W

∂St
= 0. �

Derivation of Beta Formulas in Appendix A
(a) Discount Beta: The pricing function (33) is in the form discussed in Proposition 1. Thus, representation

(19) applies. From P TW
t = P TW (Ct, St) = Ct

1
ρ+k

[
1 + kY

ρ
St

]
, we have ∂P TW /∂St = Ct

kY
(ρ+k)ρ

yielding(
∂P TW /P TW

)
(∂St/St)

=
kY S

ρ
[
1 + kY

ρ
St

]
Similarly, as in the proof of proposition 2, from the general pricing function P i

t = P i
(
Ct, St, s

i/si
t

)
= CtΨ

(
St, s

i
t

)
.

For convenience, let me rewrite

Ψi
(
St, s

i/si
t

)
= ai

0s
i + ai

1Y ksiSt + aisi
t + ai

2Y ksi
tSt

where a little algebra shows that given ai =
(
ρ + k + φi + αθi

CF

)−1
and

ai
0 = ai φi

(ρ + k)
; ai

1 = ai

(
φi
(
2ρ + k + φi

)
+ φi (ρ + k)λ αθi

(
Y k
)−1

ρ (ρ + k)
(
ρ + φi

) )

ai
2 = ai

(
1 + λ αθi

(
kY
)1)(

ρ + φi
)

This implies

∂P i/P i

∂St/St
=

(
ai
1s

i + ai
2s

i
t

)
Y kSt

ai
0s

i + aisi
t +
(
a1si + ai

2s
i
t

)
Y kSt

=
Y kSt

ai
0si+aisi

t

ai
1si+ai

2si
t

+ Y kSt

Finally, notice that

f̃
(
s/si

t

)
=

ai
0s

i + aisi
t

ai
1s

i + ai
2s

i
t

=
ai
0

(
si/si

t

)
+ ai

ai
1

(
si/si

t

)
+ ai

2

=
ρ
[
φi
(
ρ + φi

) (
si/si

t

)
+ (ρ + k)

(
ρ + φi

)](
φi
(
2ρ + k + φi

)
+ φi (ρ + k)λ αθi

(
Y k
)−1
) (

si/si
t

)
+ ρ (ρ + k)

(
1 + λ αθi

(
kY
)1)

=
ρ
[
φi
(
ρ + φi

) (
si/si

t

)
+ (ρ + k)

(
ρ + φi

)]
φi
(
ρ + φi

) (
si/si

t

)
+ (ρ + k)

(
1 + λ αθi

(
Y k
)−1
) (

φi
(
si/si

t

)
+ ρ
)

Thus, we can write

βi
DISC

(
St, s

i
t

)
=

1 +
(

∂P i/P i

∂St/St

)
σS (St)

1 +
(

∂PT W /PT W

∂St/St

)
σS (St)

=
1 + Y kSt

Y kSt+ρf(si/si
t;θ

i
CF )

σS (St)

1 + kY S

kY St+ρ
σS (St)

where

f
(
si/si

t; θ
i
CF

)
=

φi
(
ρ + φi

) (
si/si

t

)
+ (ρ + k)

(
ρ + φi

)
φi
(
ρ + φi

) (
si/si

t

)
+ (ρ + k)

(
1 + λ αθi

(
Y k
)−1
) (

φi
(
si/si

t

)
+ ρ
)
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Proof of properties (i) - (iv): (i) after taking the first derivative with respect to si/si
t and canceling

common terms, we find f ′ (si/si
t; θ

i
CF

)
< 0 if and only if

− (ρ + k)φi
(
ρ + φi

) ((
ρ + φi

)
+ k
(
1 + λ αθi

(
Y k
)−1
))

< 0,

which yields the condition. (ii) is immediate, as

f
(
1; θi

CF

)
=

φi + (ρ + k)

φi + (ρ + k)
(
1 + λ αθi

(
Y k
)−1
) > 1 if and only if θi

CF < 0

(iii) and (iv) are also immediate.

(b) Cash-Flow Beta.
In this case, we must compute ∂P i/∂si

t. From P i
(
Ct, St, s

i/si
t

)
= CtΨ

(
St, s

i
t

)
with

Ψi
(
St, s

i/si
t

)
= ai

0s
i + ai

1Y ksiSt + aisi
t + ai

2Y ksi
tSt

we find
∂P i/P i

∂si
t/si

t

=
1

1 +
ai
0+ai

1Y kSt

ai+ai
2Y kSt

(
si/si

t

) .
Define

G̃ (St) =
ai
0 + ai

1Y kSt

ai + ai
2Y kSt

=
φi

ρ

(
ρ + φi

) (
ρ + kY St

)
+ (ρ + k)

(
Y k + λαθi

)
St(

ρ + φi
)
(ρ + k) + (ρ + k)

(
Y k + λαθi

)
St

,

and thus

G (St) =

(
ρ + φi

) (
ρ + kY St

)
+ (ρ + k)

(
Y k + λαθi

)
St(

ρ + φi
)
(ρ + k) + (ρ + k)

(
Y k + λαθi

)
St

Notice that G′ (S) > 0 if and only if

0 <
(
ρ + φi

)
kY
(
ρ + φi

)
(ρ + k) + (ρ + k)

(
Y k + λαθi

) (
ρ + φi

)
k,

which yields the condition θi > −Y (ρ+φi+k)
λ α . We can then write

βi
CF

(
St, s

i
t

)
=

(
∂P i/P i

∂si
t/si

t

)(
θi

CF −∑n
j=1 sj

tθ
j
CF

)
1 +
(

∂PT W /PT W

∂St

)
σS (St)

(
1

σ2
c,1

)

=

1

1+ φi

ρ
G(S)(si/si

t)

1 + kY S

kY St+ρ
σS (St)

(
θi

CF −
n∑

j=1

sj
tθ

j
CF

)(
1

σ2
c,1

)

=

(
kY St + ρ

kY St + ρ + kY StσS (St)

)(
1

1 + φi

ρ
G (S)

(
si/si

t

))(θi
CF −

n∑
j=1

sj
tθ

j
CF

)(
1

σ2
c,1

)
.

Thus, formula (38) follows. Finally,

H (S) =
kY St + ρ

kY St + ρ + kY St (1− λS) α

is such that H ′ (S) > 0 if and only if 0 < −ρ + kY (St)
2 λ + ρ2Stλ. Since the two roots of the equation

kY λ (St)
2 + 2ρλSt − ρ = 0 are

S1 =
−ρλ −

√
ρ2λ2 + kY λρ

kY λ
< 0 <

−ρλ +
√

ρ2λ2 + kY λρ

kY λ
= S2

we find the condition

H ′ (S) > 0 if and only if St >
−ρλ +

√
ρ2λ2 + kY λρ

kY λ
.
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Proof of expression (29) and (30): From (28) and the notation πt = e−ρtuc (Ct − Xt), we can apply the
law of iterated expectations and write

Vt = E

[
E

[∫ t+T

t

πτ

πt
CFτdτ |T

]]
(40)

Since the stochastic discount factor does not depend explicitly on the random arrival of T , the inner expectation

Vt (T ) = Et

[∫ t+T

t

πτ

πt
CFτdτ |T

]
satisfies the Euler equation

Et [d (Vt (T ) πt)] + Et [πtCFt] = 0

Let Xt be the set of state variables affecting all random processes in this economy and let them satisfy the
stochastic differential equation dXt = µ (Xt) dt + σ (X) dBt. Rewriting V (Xt, t; T ) = Vt (T ), an application of
Ito’s Lemma yields

V rt =
∂V

∂t
+
∑

i

∂V

∂Xi
· (µi (X) + σi,1 (Xt)σπ) +

1

2

∑
i

∑
j

∂2V

∂Xi∂Xj
· σi (X) σj (X)′ +CFt

where rt = r (Xt) is the riskless rate. The excess expected return is given by

µR (Xt) = −cov

(
dV

V
,
dπ

π

)
= − 1

V

∑
i

∂V

∂Xi
σi,1 (Xt)σπ

Thus, we can rewrite

V (rt + µR (Xt)) =
∂V

∂t
+
∑

i

∂V

∂Xi
· µi (X) +

1

2

∑
i

∑
j

∂2V

∂Xi∂Xj
· σi (X)σj (X)′ +CFt

Feynman Kac theorem then yields

Vt (T ) = E

[∫ T

t

e−
∫ τ

t rs+µR(Xs)dsCFτdτ |T
]

Since the return on the total wealth portfolio dRTW
t is perfectly correlated with the stochastic discount factor,

it is immediate to see that we can also write µR (Xt) = βt × Et

[
dRTW

t

]
where

βt =
cov
(

dV
V

, dRTW
t

)
var (dRTW

t )

yielding the representation (29).
We can finally obtain an expression for Vt: The random time T has an the exponential distribution with

f (T ) = pe−pT . From (40) we obtain

Vt =

∫ ∞

t

Et

[∫ t+T

t

πτ

πt
CFτdτ |T

]
pe−pT dT =

∫ ∞

t

(∫ t+T

t

E

[
πτ

πt
CFτ

]
dτ

)
pe−pT dT (41)

Using the integration by parts rule∫
G (x)F (x) dx =

(∫
G (x) dx

)
F (x) −

∫ (∫
G (x) dx

)
F ′ (x) dx

and recalling that
∫

pe−pT = −e−pT , we obtain∫ ∞

t

(∫ t+T

t

E

[
πτ

πt
CFτ

]
dτ

)
pe−pT dT =

[(∫ t+T

t

E

[
πτ

πt
CFτ

]
dτ

)
pe−pT

]T=∞

T=0

−
∫ ∞

t

E

[
πτ

πt
CFτ

] (
−e−p(τ−t)

)
dτ
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Assuming that
(∫ t+T

t
E
[

πτ
πt

CFτ

]
dτ
)

does not diverge to infinity faster than e−pT , we obtain that the first

term is zero and thus

Vt =

∫ ∞

t

e−p(τ−t)Et

[
πτ

πt
CFτ

]
dτ

From the definition of CFτ and the fact that ετ is independent of Di
τ we find

Vt = a

∫ ∞

t

e−p(τ−t)Et

[
πτ

πt
Di

τετ

]
dτ = a

∫ ∞

t

e−p(τ−t)Et

[
πτ

πt
Di

τ

]
Et [ετ ] dτ

Substituting Et [ετ ] = 1 + (εt − 1) e−kε(τ−t)

Vt = a

{∫ ∞

t

Et

[
e−(ρ+p)(t−t) uc (Cτ − Xτ )

uc (Ct − Xt)
Di

τ

]
dτ + (εt − 1)

∫ ∞

t

Et

[
e−(ρ+p+kε)(t−t) uc (Cτ − Xτ )

uc (Ct − Xt)
Di

τ

]
dτ

}
A proof identical to the one in the Appendix of MSV then shows that for every t after the investment takes
place, Vt has the approximate solution

Vt ≈ aDi
t

{
ΦV
(
St, s

i/si
t

)
+ (εt − 1) Φ̂V

(
St, s

i/si
t

)}
, (42)

where ΦV
(
St, s

i/si
t

)
and Φ̂V

(
St, s

i/si
t

)
are as in (27), but where the parameter ρ is substituted for ρ + p and

ρ + p + kε, respectively. At the time of the investment, however, εt is not known, and thus the value equals the

unconditional expectation of (42). Since unconditionally E[εt] = 1 we obtain (30).
Finally, since εt is idiosyncratic, its variation does not command a premium, and thus a similar proof as

in Proposition 1 shows that for every t after the investment takes place:

βτ = βDISC

(
Sτ ,

si

si
τ

, εt

)
+ βCF

(
Sτ ,

si

si
τ

, εt

)
(43)

where the formulas for βDISC and βCF are given in (20) and (21).25

25Note that although εt does not command a premium on its own, its level does affect the project beta, as it
changes the relative weight of the two components of Vt, ΦV

(
St, s

i/si
t

)
and Φ̂V

(
St, s

i/si
t

)
.
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TABLE AI
Description and Summary Statistics of Industries

Industry SIC Avg. No. of Min. No. of Avg. Market
Description Stocks Stocks Cap. (%)

1. Mining 10-14 145.2 30 2.656
2. Food 20 98 48 4.943
3. Apparel 22-23 74 18 0.609
4. Paper 26 37.8 5 1.904
5. Chemical 28 150.5 25 10.394
6. Petroleum 29 35.4 23 10.610
7. Construction 32 36.2 5 1.273
8. Prim. Metals 33 75.7 44 4.269
9. Fab. Metals 34 73.6 9 1.415
10. Machinery 35 185.7 25 5.760
11. Electric Eq. 36 198.9 14 6.064
12. Transport Eq. 37 91.4 46 7.646
13. Manufacturing 38-39 153.6 10 2.902
14. Railroads 40 34 8 3.049
15. Other Transport. 41-47 61.4 15 0.875
16. Utilities 49 127.7 21 7.856
17. Dept. Stores 53 42.4 20 3.743
18. Retail 50-52 54-59 254.2 22 2.313
19. Financial 60-69 441.6 15 6.927
20. Other 619.2 57 14.788

38



TABLE I
Model parameters and moments of aggregate quantities

Panel A: Preference parameters and consumption parameters

ρ Ȳ k λ α µC σC

0.04 33.97 0.16 20.00 79.39 0.02 0.01

Panel B: Aggregate Moments

E(R) V ol(R) E(rf ) V ol(rf) Ave(PC/100) SR

Data 0.07 0.16 0.01 0.01 0.30 0.46
Model 0.07 0.23 0.01 0.04 0.30 0.31

Panel C: Share Process

Industry s̄i φi θi
CF -Cash-flow θi

CF -Return
(x1000) (x100)

Constr. 0.04 0.52 -0.12 0.23
Railroads 0.09 0.20 -0.47 0.04
Retail 0.04 0.20 -0.09 0.07
Petroleum 0.52 0.16 -0.20 -0.18
Mining 0.05 0.16 -0.33 -0.11
Elect.Eq. 0.09 0.14 -0.21 0.23
Apparel 0.01 0.12 -0.16 0.02
Machinery 0.12 0.11 -0.10 0.14
Paper 0.05 0.11 -0.19 -0.01
Other Transp. 0.01 0.09 -0.06 0.09
Dept.Stores 0.09 0.09 -0.03 0.08
Transp.Eq. 0.25 0.08 0.27 0.03
Manufact. 0.05 0.06 -0.13 0.04
Other 0.17 0.06 -0.08 -0.07
Fab.Metals 0.03 0.05 -0.17 -0.03
Financial 0.05 0.04 -0.02 -0.02
Chemical 0.29 0.03 -0.14 -0.06
Prim.Metals 0.12 0.01 -0.32 -0.05
Utilities 0.10 0.00 -0.06 -0.11
Food 0.15 0.00 -0.09 -0.05
Mkt.Ptfl. 2.22 0.07 -0.10 -

Notes to Table I: This is Table 1 in Menzly, Santos, and Veronesi (2003) with the only exception of the estimate
of θi

CF obtained using returns data, which is under the heading “Returns”. Panel A: Annualized preference
and consumption process parameters chosen to calibrate the mean average excess returns, the average price
consumption ratio, the average risk free rate and its volatility, and the Sharpe ratio of the market portfolio.
Panel B: Expected excess return of the market portfolio, E(R), standard deviation of returns of the market
portfolio, V ol(R), expected risk free rate, E(rf ), standard deviation of the risk free rate, V ol(rf ), average price
consumption ratio, Ave(PC/100), and Sharpe ratio of the market portfolio, SR. Panel C: Estimates of the long
run mean, si, and the speed of mean reversion φi, cash flow risk, θi

CF , and covariance between dividend growth
and consumption growth, cov(dδi

t, dct) for each industry. Industries are ordered, in this and subsequent tables,
according to the parameter φi. All entries in the table are in annual units.
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TABLE II
The standard deviation of market betas

Industry Fama and French (1997) θi
CF -Cash-flow θi

CF -Return

Constr. .11 .02 .11
Railroads .19 .05 .04
Retail .27 .02 .04
Petroleum .24 .02 .10
Mining .27 .05 .16
Elect.Eq. .00 .02 .22
Apparel .10 .03 .06
Machinery .05 .03 .14
Paper .14 .02 .01
Other Transp. .05 .04 .10
Dept.Stores .24 .02 .09
Transp.Eq. .07 .04 .03
Manufact. .00 .03 .05
Other .08 .02 .08
Fab.Metals .21 .04 .04
Financial .08 .02 .03
Chemical .05 .04 .10
Prim.Metals .11 .10 .14
Utilities .30 .02 .33
Food .12 .03 .15

Notes to Table II: This table reports the standard deviation of betas. The column under the heading Fama
and French (1997) provides an estimate of the standard deviation of the “true” beta using the procedure used by
these authors. Under the assumption that the sampling error associated with the market betas is uncorrelated

with the true value of the beta, the variance of the rolling regression beta, β̂
rolling-regress.

t , is the sum of the
variance of the true market beta and the variance of the estimation error and thus

σ2
(
β̂

rolling-regress.

t

)
= σ2 (βt) + σ2 (εt) .

The column under the heading θi
CF -Cash-flow provides an estimate of the standard deviation of the theoretical

betas in 40,000 quarters of artificial data when θi
CF is estimated using only cash-flow data. The column under

the heading θi
CF -Returns provides an estimate of the standard deviation of the theoretical betas in 40,000

quarters of artificial data when θi
CF is estimated using only returns data.
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TABLE III
The cross sectional dispersion of market betas

Panel A: Dispersion in Betas

Sample: 1927 - 2001 Sample: 1947 - 2001

Sorting Variable Up Down p-Value Up Down p-Value

P M
t /DM

t .25 .19 .04 .32 .17 .00
Surplus .17 .22 .85 .22 .13 .01

STDCS
(

si

si
t

)
.25 .18 .09 .27 .17 .02

Panel B: Dispersion of Betas: Interaction with dispersion of Shares

Sample: 1927 - 2001 Sample: 1947 - 2001

Sorting variable = P M
t /DM

t

Up Down p-Value Up Down p-Value

High .27 .22 .15 .39 .16 .00

STDCS
(

si

si
t

)
Low .19 .12 .02 .20 .14 .05

p-value .06 .00 .00 .00 .26 .00

Sorting variable = Surplus

Up Down p-Value Up Down p-Value

High .20 .25 .85 .27 .20 .07

STDCS
(

si

si
t

)
Low .20 .11 .01 .24 .14 .01

p-value .53 .00 .01 .27 .07 .00

Notes to Table III: Panel A: Cross sectional dispersion of return betas in good or bad times as measured by
STDCS

(
βi
)

and p values of the difference. Betas are estimated from the regression

Ri
t+1 = αi + βi

Up

(
IdxUp

t RM
t+1

)
+ βi

Do

(
IdxDo

t RM
t+1

)
+ εi

t+1

where Ri
t+1 and RM

t+1 are the excess return on industry i and the market between t and t + 1, respectively, and
IdxUp

t and IdxDo
t are indicator functions of whether the aggregate equity premium is low or high, that is whether

times are good (Up) or bad (Do). As proxies for the aggregate state of the economy we consider (i) the market
price dividend ratio, with IdxUp

t = 1 if the price dividend ratio of the market is above its historical 70 percentile,
and IdxDo

t = 1 if price dividend ratio is below its historical 30 percentile; (ii) the surplus-consumption ratio St

itself, where again IdxUp
t = 1 or IdxDo

t = 1, if the surplus is above its 70 percentile, or below its 30 percentile;
and (iii)the dispersion of relative shares. Panel B : Cross sectional dispersion of return betas in good versus
bad times and periods of large dispersion of relative shares versus low dispersion of relative shares. Betas are
computed from the regression

Ri
t+1 = αi +

∑
k=Up,Do

∑
h=Hi,Lo

βi
kh

(
Idxkh

t RM
t+1

)
+ εi

t+1,

where Idxkh
t is an indicator function of whether the economy is in a high or low state and the cross sectional

dispersion of relative share is high (Hi) or low (Lo). The high dispersion of relative shares as well as the
good state periods are defined using the 50% percentile cutoff. The results are reported for the long sample,
1927-2001, and the short sample, 1947-2001.
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TABLE IV
Simulations - The Cross Sectional Dispersion of market betas

Panel A: Dispersion of Betas

θi
CF -Cash-flow θi

CF -Return

Sorting variable Up Down p-Value Up Down p-Value

P M
t /DM

t .03 .02 .01 .27 .14 .00
Surplus .04 .02 .00 .29 .14 .00

STDCS
(

si

si
t

)
.02 .02 .53 .13 .15 .68

Panel B: Dispersion of Betas: Interaction with dispersion of shares

Sorting variable = P M
t /DM

t

Up Down p-Value Up Down p-Value

High .03 .02 .03 .26 .12 .00

STDCS
(

si

si
t

)
Low .04 .02 .01 .28 .14 .00

p-Value .78 .55 .04 .64 .77 .00

Sorting variable = Surplus

Up Down p-Value Up Down p-Value

High .04 .02 .00 .27 .12 .00

STDCS
(

si

si
t

)
Low .04 .02 .00 .30 .14 .00

p-Value .54 .57 .00 .65 .76 .00

Notes to Table IV: This table replicates Table III in 40,000 quarters of artificial data. Specifically, in simulated
return data, the table reports the cross sectional dispersion of return betas in good or bad times as measured
by STDCS

(
βi
)

and p values of the difference. Betas are estimated from the regression

Ri
t+1 = αi + βi

Up

(
IdxUp

t RM
t+1

)
+ βi

Do

(
IdxDo

t RM
t+1

)
+ εi

t+1

where Ri
t+1 and RM

t+1 are the excess return on industry i and the market between t and t + 1, respectively, and
IdxUp

t and IdxDo
t are indicator functions of whether the aggregate equity premium is low or high, that is whether

times are good (Up) or bad (Do). As proxies for the aggregate state of the economy we consider (i) the market
price dividend ratio, with IdxUp

t = 1 if the price dividend ratio of the market is above its historical 70 percentile,
and IdxDo

t = 1 if price dividend ratio is below its historical 30 percentile; (ii) the surplus-consumption ratio St

itself, where again IdxUp
t = 1 or IdxDo

t = 1, if the surplus is above its 70 percentile, or below its 30 percentile;
and (iii)the dispersion of relative shares. Panel B : Cross sectional dispersion of return betas in good versus
bad times and periods of large dispersion of relative shares versus low dispersion of relative shares. Betas are
computed from the regression

Ri
t+1 = αi +

∑
k=Up,Do

∑
h=Hi,Lo

βi
kh

(
Idxkh

t RM
t+1

)
+ εi

t+1,

where Idxkh
t is an indicator function of whether the economy is in a high or low state and the cross sectional

dispersion of relative share is high (Hi) or low (Lo). The high dispersion of relative shares as well as the
good state periods are defined using the 50% percentile cutoff. The heading θCF -Cash-flow reports results
where simulated returns are generated using θi

CF estimated from only cash-flow data. The heading θCF -Return
reports results where simulated returns are generated using θi

CF estimated from stock return data.
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TABLE V
Changes in betas and investment growth

∆
(

P i
t /Ct

PC

)
∆

(
P i

t−1/Ct−1

PC

)
∆
(

si

si
t

)
∆

(
si

si
t−1

)
∆βi

t ∆βi
t−1 Adj. R2

Panel A: Total Investment

1. −0.14 0.18∗ 0.06
(0.98) (3.06)

2. −0.09∗ −0.05∗∗ 0.03
(−3.83) (−1.94)

3. 0.06∗∗ 0.11∗ 0.02
(1.79) (2.52)

4. −0.04 0.17∗ −0.08∗ −0.03 0.07∗ 0.08∗ 0.09
(−0.63) (2.76) (−3.01) (−1.05) (2.13) (2.11)

Panel B: Value-weighted Investments

1. −0.05 0.20∗ 0.06
(−0.76) (3.17)

2. −0.06∗∗ −0.02 0.01
(−1.91) (−0.76)

3. 0.09∗ 0.13∗ 0.02
(2.11) (2.62)

4. −0.07 0.20∗ −0.04 −0.00 0.10∗ 0.11∗ 0.08
(−1.11) (3.01) (−1.48) (0.14) (2.35) (2.31)

Panel C: Equal-weighted Investments

1. 0.02 0.24∗ 0.07
(0.28) (3.58)

2. −0.03 −0.01 0.00
(−1.04) (−0.50)

3. 0.11∗ 0.16∗ 0.03
(2.66) (3.99)

4. −0.00 0.23∗ −0.01 0.01 0.11∗ 0.13∗ 0.32
(−0.01) (3.48) (−0.25) (0.51) (2.81) (3.38)

Notes to Table V: This table reports the results of a panel regression of industry real investment growth on
changes in the price consumption ratio of the industry portfolio, normalized by the average price consumption
ratio,

(
P i

t /Ct

)
/PC, changes in relative share si/si

t and changes in conditional betas βt, and their lags. In Panel
A, industry investments are defined as the industry total Capital Expenditures (Capex) over total Property,
Plant and Equipment (PPE). Panel B and C industry investments are defined a Weighted Average or Equally
Weighted Average of individual firms Capex over PPE. The industry conditional beta at time t, βt is computed
from a rolling regression using the 24 months prior to t. Industry dummies are included in the regression.
t-statistics, computed using robust standard errors clustered by year, are reported in parenthesis. * and **
denotes significance at the 5% and 10% respectively.
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TABLE VI
Changes in betas and investment growth with year dummies

∆
(

P i
t /Ct

PC

)
∆

(
P i

t−1/Ct−1

PC

)
∆
(

si

si
t

)
∆

(
si

si
t−1

)
∆βi

t ∆βi
t−1 Adj. R2

Panel A: Total Investment

1. 0.08 0.13 0.32
(1.27) (1.48)

2. −0.06∗ −0.04∗ 0.32
(−3.28) (−1.82)

3. 0.09∗ 0.06 0.32
(2.47) (1.57)

4. −0.00 0.11 −0.06∗ −0.02 0.09∗ 0.06 0.33
(−0.01) (1.13) (−3.01) (−0.97) (2.57) (1.43)

Panel B: Value-weighted Investments

1. 0.04 0.07 0.29
(0.59) (0.71)

2. −0.02 −0.01 0.29
(−1.03) (−0.23)

3. 0.14∗ 0.07 0.30
(2.71) (1.55)

4. −0.00 0.08 −0.02 0.01 0.14∗ 0.07 0.30
(−0.01) (0.86) (−0.92) (0.19) (2.71) (1.50)

Panel C: Equal-weighted Investments

1. −0.01 0.14 0.27
(−0.08) (1.74)

2. −0.03 −0.03 0.27
(−1.15) (−1.59)

3. 0.14∗ 0.10∗ 0.29
(3.37) (2.43)

4. −0.07 0.13 −0.04 −0.02 0.14∗ 0.10∗ 0.29
(−0.84) (1.48) (−1.29) (−0.73) (3.40) (2.45)

Notes to Table VI: This table reports the results of a panel regression of industry real investment growth on
changes in the price consumption ratio of the industry portfolio, normalized by the average price consumption
ratio,

(
P i

t /Ct

)
/PC, changes in relative share si/si

t and changes in conditional betas βt, and their lags. In Panel
A, industry investments are defined as the industry total Capital Expenditures (Capex) over total Property,
Plant and Equipment (PPE). Panel B and C industry investments are defined a Weighted Average or Equally
Weighted Average of individual firms Capex over PPE. The industry conditional beta at time t, βt is computed
from a rolling regression using the 24 months prior to t. Industry dummies and year dummies are included in the
regression. t-statistics, computed using robust standard errors clustered by year, are reported in parenthesis. *
and ** denotes significance at the 5% and 10% respectively.
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TABLE VII
Simulations - Changes in betas and investment growth

Panel A: Panel regression without year dummies - Table V

Mean Median 5% 95%

A.1 θi
CF−Cash-Flow

∆
(

P i
t /Ct

PC

)
0.510 0.596 0.052 0.777

∆
(

si

si
t

)
−0.011 −0.00 −0.051 0.000

∆βi
t −0.094 −0.059 −0.519 0.204

A.2 θi
CF−Returns

∆
(

P i
t /Ct

PC

)
0.211 0.194 0.026 0.461

∆
(

si

si
t

)
−0.001 −0.00 −0.012 0.000

∆βi
t 0.022 0.023 −0.029 0.059

Panel B: Panel regression with year dummies - Table VI

Mean Median 5% 95%

B.1 θi
CF−Cash-Flow

∆
(

P i
t /Ct

PC

)
0.352 0.443 −0.057 0.804

∆
(

si

si
t

)
−0.029 −0.00 −0.142 0.000

∆βi
t 0.540 0.547 0.358 0.709

B.2 θi
CF−Returns

∆
(

P i
t /Ct

PC

)
0.078 0.041 0.001 0.207

∆
(

si

si
t

)
−0.002 −0.00 −0.014 −0.000

∆βi
t 0.110 0.119 0.026 0.154

Notes to Table VII: This table reports the results of the multivariate panel regression of industry real
investment growth on changes in the price consumption ratio of the industry portfolio, normalized by the
average price consumption ratio,

(
P i

t /Ct

)
/PC, changes in relative share si/si

t and changes in conditional betas
βt in simulated data. To handle the dimensionality problem with year dummies, we divide the 10,000 simulation
years in 20 series of 500 years each for our two sets of estimates of the cash-flow parameter θi

CF . Panel A: Panel
regression without time dummies as in Table V. Panel B: Panel regression with time dummies as in Table VI.
For each panel regression we report the mean, median, 5 % and 95% estimates of the corresponding coefficient
across the 20 simulations.
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Figure 1: Model-Implied Betas
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A. Beta: Discount Component
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B. Beta: Cash Flow Risk Component: θ
CF
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C. Beta: Cash Flow Risk Component: θ
CF
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Panel A: Discount Beta βDIS(St, s
i/si

t); Panel B: Cash-Flow Beta βCF (St, s
i/si

t)
with positive unconditional cash flow risk index θi

CF > 0; Panel C: Cash-Flow Beta
βCF (St, s

i/si
t) with negative unconditional cash flow risk index θi

CF < 0.

46



Figure 2: Model-Implied Betas
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Panel A: Empirical estimates of the time-series variation of industry betas (stars),
computed as in Fama and French (1997):

σ(βtrue
t ) =

√
σ2
(
β̂t

rolling-regress.
)
− σ2 (εt),

where σ2
(
β̂t

rolling-regress.
)

is the time series variance of betas estimated using a

20 quarter rolling regression, and σ2 (εt) is the average variance of the residuals
of the rolling regressions. The solid lines provide the 95 % confidence interval for
the same statistic computed on 1000, 54-year samples of artificial data (the lower
bound coincides with the zero axis). The parameter choices correspond to the case
where θi

CF are computed using fundamental variables. Panel B: Same as panel A,
but with parameter choices corresponding to the case where θi

CF are estimated by
GMM using stock returns.
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